16、已知在等比數(shù)列{an}中,各項(xiàng)均為正數(shù),且a1=1,a1+a2+a3=7,則數(shù)列{an}的通項(xiàng)公式是an=
2n-1
分析:根據(jù)所給的數(shù)列首項(xiàng)和前三項(xiàng)之和,整理出關(guān)于公比q的一元二次方程,解方程得到兩個(gè)解,舍去負(fù)解,寫(xiě)出數(shù)列的通項(xiàng).
解答:解:∵等比數(shù)列{an}中a1=1,a1+a2+a3=7
∴a2+a3=6,
∴q+q2=6,
∴q2+q-6=0,
∴q=2,q=-3(舍去)
∴{an}的通項(xiàng)公式是an=2n-1
故答案為:2n-1
點(diǎn)評(píng):本題考查等比數(shù)列的通項(xiàng)公式,是一個(gè)基礎(chǔ)題,解題的關(guān)鍵是數(shù)列中基本量的運(yùn)算,只要細(xì)心就能夠得分的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,a1+a3=10,a4+a6=
5
4
,則等比數(shù)列{an}的公比q的值為( 。
A、
1
4
B、
1
2
C、2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,a1+a2=2,a4+a5=16,求數(shù)列{an}的通項(xiàng)an與前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,Sn為其前n項(xiàng)和,且a4=2S3+3,a5=2S4+3,則此數(shù)列的公比q為( 。
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,a1•a2•a3=8,a1+a2=3,試求:
(I)a1與公比q;
(Ⅱ)該數(shù)列的前10項(xiàng)的和S10的值(結(jié)果用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•龍泉驛區(qū)模擬)已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3-1的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=2n-1+an(n∈N*),求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案