精英家教網 > 高中數學 > 題目詳情
如圖,是某直三棱柱(側棱與底面垂直)被削   去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,M是BD的中點.側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ)試問在棱DC上是否存在點N,使NM⊥平面BDE?若存在,確定點N的位置;若不存在,請說明理由.

【答案】分析:(I)由圖可以看出,幾何體可以看作是以點B為頂點的四棱錐,其與底面積易求;
(II)證明線EM與面ABC中一線平行即可利用線面平行的判定定理得出線面平行,由圖形易得,可構造平行四邊形證明線線平行,取BD中點M,EM,MG,AG,即可;
(III)本題是個存在問題,解法一:可先根據題設中的條件,推斷圖形中的位置關系并確定點的位置,再進行證明.
解法二:解決本題最好用向量法,建立空間坐標系,依據題設條件直接給出點的坐標,用向量表示出位置關系對應的方程,進行求解,若解出的坐標存在于所要求的位置,則說明存在.
解答:解:(Ⅰ)證明:由題意,EA⊥平面ABC,DC⊥平面ABC,AE∥DC,AE=2,DC=4,AB⊥AC,且AB=AC=2
∵EA⊥平面ABC,
∴EA⊥AB,又AB⊥AC,∴AB⊥平面ACDE
∴四棱錐B-ACDE的高h=AB=2,梯形ACDE的面積S=6

即所求幾何體的體積為4(4分)
(Ⅱ)證明:∵M為DB的中點,取BC中點G,連接EM,MG,AG,
∴MG∥DC,且MG=DC∴MG=AE,
∴四邊形AGME為平行四邊形,
∴EM∥AG,又AG⊆平面ABC∴EM∥平面ABC.(8分)
(Ⅲ)解法1:由(Ⅱ)知,EM∥AG,
又∵平面BCD⊥底面ABC,AG⊥BC,∴AG⊥平面BCD
∴EM⊥平面BCD,又∵EM?平面BDE,
∴平面BDE⊥平面BCD
在平面BCD中,過M作MN⊥DB交DC于點N,
∴MN⊥平面BDE,點N即為所求的點,
∵△DMN∽△DCB∴
∴邊DC上存在點N,滿足DN=DC時,有NM⊥平面BDE.(13分)
解法2:以A為原點,建立如圖所示的空間直角坐標系,則A(0,0,0),B(0,2,0),C(-2,0,0)
D(-2,0,4),E(0,0,2),M(-1,1,2),=(2,2,-4),=(2,0,-2),=(0,0,-4),=(1,1,-2).
假設在DC邊上存在點N滿足題意

∴邊DC上存在點N,滿足DN=DC時,NM⊥平面BDE.(13分)
點評:本題是一個立體幾何綜合題,涉及到了求幾何體的體積,證線面平行,確定線面垂直的條件,涉及到的定理與技巧較多,對答題者的空間感知能力,問題的轉化能力要求較高,難度較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,是某直三棱柱(側棱與底面垂直)被削   去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,M是BD的中點.側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ)試問在棱DC上是否存在點N,使NM⊥平面BDE?若存在,確定點N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:江西省月考題 題型:解答題

如圖,是某直三棱柱(側棱與底面垂直)被削去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,M是BD的中點.側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(?)試問在棱DC上是否存在點N,使NM⊥平面BDE?若存在,確定點N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省紹興一中高三(下)回頭考數學試卷(理科)(解析版) 題型:解答題

如圖,是某直三棱柱(側棱與底面垂直)被削   去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,M是BD的中點.側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ)試問在棱DC上是否存在點N,使NM⊥平面BDE?若存在,確定點N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省南昌二中高三(上)第三次月考數學試卷(文科)(解析版) 題型:解答題

如圖,是某直三棱柱(側棱與底面垂直)被削   去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,M是BD的中點.側視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ)試問在棱DC上是否存在點N,使NM⊥平面BDE?若存在,確定點N的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案