(2013•河池模擬)函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-2=0上,其中mn>0,則
1
 m
+
1
n
的最小值為( 。
分析:利用1的對(duì)數(shù)等于0的性質(zhì)和基本不等式的性質(zhì)即可得出.
解答:解:∵f(1)=1+loga1=1,∴函數(shù)f(a)=1+logax(a>0,a≠1)的圖象恒過定點(diǎn)A(1,1),
∵點(diǎn)A(1,1)在直線mx+ny-2=0上,∴m+n-2=0.∵mn>0,∴m>0,n>0.
1
 m
+
1
n
=
1
2
(m+n)(
1
m
+
1
n
)
=
1
2
(2+
n
m
+
m
n
)
1
2
(2+2
n
m
×
m
n
)
=2,當(dāng)且僅當(dāng)m+n=2,
n
m
=
m
n
,m>0,n>0即m=n=1時(shí)取等號(hào).
故選B.
點(diǎn)評(píng):熟練掌握對(duì)數(shù)的性質(zhì)和基本不等式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么函數(shù)f(x)的圖象最有可能的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)已知數(shù)列{an}滿足a1=1,a2=3,an+2=3an+1-2an(n∈N+
(1)證明:數(shù)列{an+1-an }是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)在如圖所示的四棱錐P-ABCD中,已知 PA⊥平面ABCD,AB∥DC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點(diǎn).
(Ⅰ)求證:MC∥平面PAD;
(Ⅱ)求證:平面PAC⊥平面PBC;
(Ⅲ)求直線MC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)已知函數(shù)f(x)滿足下面關(guān)系:(1)f(x+
π
2
)=f(x-
π
2
)
(2)當(dāng)x∈(0,π]時(shí) f(x)=-cosx
給出下列四個(gè)命題:
①函數(shù)f(x)為周期函數(shù)      
②函數(shù)f(x)為奇函數(shù)
③函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱  
④方程f(x)=lg|x|的解的個(gè)數(shù)是8
其中正確命題的序號(hào)是:
①④
①④
(把正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)函數(shù)f(x)=Asin(ωx+
π
6
)(ω>0)
的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
π
2
的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的國像,只需將f(x)的圖象向右平移
π
12
π
12
個(gè)單位.

查看答案和解析>>

同步練習(xí)冊(cè)答案