【題目】如圖,已知四棱錐P-ABCD,底面,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.

1證明:MN//平面PAD;

2若PA與平面ABCD所成的角為,求四棱錐P-ABCD的體積V.

【答案】1詳見解析2

【解析】

試題分析:I由中位線定理得出MNBC,由MNAD,故MNAD,得出MN平面PAD;IIPAD=45°得出PD=AD,于是棱錐體積V=S正方形ABCDPD

試題解析:1證明:因為M、N分別是棱PB、PC中點,所以MN//BC,

ABCD是正方形,所以AD// BC,于是MN//AD. 3分

6分

2,知PA與平面ABCD所成的角為,

9分

中,知,

故四棱錐P-ABCD的體積. 12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式|x+1|+|x﹣1|<4的解集為M.
(1)設Z是整數(shù)集,求Z∩M;
(2)當a,b∈M時,證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖,圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( 。

A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

(1)4月份任取一天,估計西安市在該天不下雨的概率;

(2)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)所給的條件求直線的方程:

(1)直線過點(-4,0),傾斜角的正弦值為;

(2)直線過點(5,10),到原點的距離為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)等比數(shù)列{bn}滿足:b1=a1 , b2=a2﹣1,若數(shù)列cn=anbn , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案