已知點(diǎn)和直線分別是橢圓的右焦點(diǎn)和右準(zhǔn)線.過點(diǎn)作斜率為的直線,該直線與交于點(diǎn),與橢圓的一個(gè)交點(diǎn)是,且.則橢圓的離心率         .

 

【答案】

【解析】解:因?yàn)樵O(shè)出直線方程與l聯(lián)立方程組得到點(diǎn)A,然后結(jié)合,與橢圓方程聯(lián)立得到a,b的關(guān)系式,得到橢圓的離心率

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);

(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢

圓E和直線的方程,若不能,請(qǐng)說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案