【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個人組成的解密團隊參加一項解密挑戰(zhàn)活動,規(guī)則是由密碼專家給出題目,然后由個人依次出場解密,每人限定時間是分鐘內(nèi),否則派下一個人.個人中只要有一人解密正確,則認為該團隊挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測試情況,抽取了甲次的測試記錄,繪制了如下的頻率分布直方圖.

1)若甲解密成功所需時間的中位數(shù)為,求、的值,并求出甲在分鐘內(nèi)解密成功的頻率;

2)在“挑戰(zhàn)不可能”節(jié)目上由于來自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為,其中表示第個出場選手解密成功的概率,并且定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨立.

求該團隊挑戰(zhàn)成功的概率;

該團隊以從小到大的順序按排甲、乙、丙三個人上場解密,求團隊挑戰(zhàn)成功所需派出的人員數(shù)目的分布列與數(shù)學(xué)期望.

【答案】1,,甲在分鐘內(nèi)解密成功的頻率;(2)①;②詳見解析,.

【解析】

1)根據(jù)中位數(shù)左右兩邊的矩形面積之和均為可求得、的值,并根據(jù)頻率分布直方圖求得甲在分鐘內(nèi)解密成功的頻率;

2)①由(1)得出,求出、的值,由此得出該團隊挑戰(zhàn)成功的概率為

②由題意可得出隨機變量的可能取值有、、,利用獨立事件的概率乘法公式計算出隨機變量在不同取值下的概率,據(jù)此可得出隨機變量的分布列,結(jié)合期望公式可計算出的數(shù)學(xué)期望值.

1)甲解密成功所需時間的中位數(shù)為

,解得

,解得

由頻率分布直方圖知,甲在分鐘內(nèi)解密成功的頻率是;

2)①由題意及(1)可知第一個出場選手解密成功的概率為,

第二個出場選手解密成功的概率為,

第三個出場選手解密成功的概率為,

所以該團隊挑戰(zhàn)成功的概率為;

②由①可知按從小到大的順序的概率分別、、,

根據(jù)題意知的取值為、、

,,

所以所需派出的人員數(shù)目的分布列為:

因此,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一旅游區(qū)有兩個新建項目、.項目的一期投資額與利潤近似滿足.項目的一期投資額與利潤的關(guān)系如散點圖所示,其中,.一商家欲向這兩個項目一期隨機投資,其中投資項目不超過10(本題未注明金額單位的,單位均為百萬元).投資、相互獨立.

1)用最小二乘法求的回歸直線方程;

2)商家投資項目的概率是0.4,投資項目的概率是0.6.設(shè)商家這次投資獲得的利潤最大值為,利用(1)的結(jié)果,求.

附參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查“雙11”消費活動情況,某校統(tǒng)計小組分別走訪了、兩個小區(qū)各20戶家庭,他們當(dāng)日的消費額按,,,,,,分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計如下(單位:元):

1)分別計算兩個小區(qū)這20戶家庭當(dāng)日消費額在的頻率,并補全頻率分布直方圖;

2)分別從兩個小區(qū)隨機選取1戶家庭,求這兩戶家庭當(dāng)日消費額在的戶數(shù)為1時的概率(頻率當(dāng)作概率使用);

3)運用所學(xué)統(tǒng)計知識分析比較兩個小區(qū)的當(dāng)日網(wǎng)購消費水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面,平面,點是線段上一動點,.給出下列四個結(jié)論:

的重心;

;

③當(dāng)時,平面;

④當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為.

其中,所有正確結(jié)論的序號是________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面是平行四邊形,平面,,,中點,點在棱上移動.

(1)若,求證:

(2)若,當(dāng)點中點時,求與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為,t為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直角坐標(biāo)系下直線與曲線的普通方程;

2)設(shè)直線與曲線交于點、(二者可重合),交軸于,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與拋物線相交于,兩點,且,若軸距離的乘積為

1)求的方程;

2)設(shè)點為拋物線的焦點,當(dāng)面積最小時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下幾個結(jié)論:

①命題,,則

②命題“若,則”的逆否命題為:“若,則

③“命題為真”是“命題為真”的充分不必要條件

④若,則的最小值為4

其中正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,分別為內(nèi)角,,的對邊,且滿.

1)求的大。

2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補充在下面的問題中,并解答問題.________,________,求的面積.

查看答案和解析>>

同步練習(xí)冊答案