已知是橢圓的右焦點(diǎn),圓軸交于兩點(diǎn),是橢圓與圓的一個(gè)交點(diǎn),且.

(Ⅰ)求橢圓的離心率;

(Ⅱ)過點(diǎn)與圓相切的直線的另一交點(diǎn)為,且的面積等于,求橢圓的方程.

 

【答案】

①. ②. .

【解析】

試題分析:(Ⅰ)利用圓及橢圓方程求出點(diǎn) 的坐標(biāo), 利用圓的幾何性質(zhì)及條件,計(jì)算出 ,再利用勾股定理建立 之間的方程,求出離心率. (Ⅱ)由(Ⅰ)問中的離心率值化簡橢圓方程,利用圓的切線性質(zhì)確定直線 的斜率,寫出直線方程,再與橢圓方程聯(lián)立,求出 的底邊長 及高,建立面積等式求出 .

試題解析:(Ⅰ)由題意,,,,

,

,

即橢圓的離心率                      (4分)

(Ⅱ)的離心率,令,,則

直線,設(shè)

    得,

又點(diǎn)到直線的距離

的面積,

解得

故橢圓………(12分)

考點(diǎn):1.橢圓的定義;2.離心率;3.圓的幾何性質(zhì);4.直線與橢圓位置關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題13分)已知橢圓的方程是,點(diǎn)分別是橢圓的長軸的左、右端點(diǎn),

左焦點(diǎn)坐標(biāo)為,且過點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知是橢圓的右焦點(diǎn),以為直徑的圓記為圓,試問:過點(diǎn)能否引圓的切線,若能,求出這條切線與軸及圓的弦所對(duì)的劣弧圍成的圖形的面積;若不能,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三學(xué)業(yè)水平考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

1求橢圓的離心率;

2設(shè)軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線的位置關(guān)系;

3設(shè)直線交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三學(xué)業(yè)水平考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

1求橢圓的離心率;

2設(shè)軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線的位置關(guān)系;

3設(shè)直線交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考(七)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過點(diǎn)

(1)求橢圓的方程;

(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過點(diǎn)引圓的切線,求此切線的方程;

(3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省昆明市高三5月適應(yīng)性檢測(cè)理科數(shù)學(xué)試題 題型:解答題

已知是橢圓的右焦點(diǎn),過點(diǎn)且斜率為的直線交于、兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).

(Ⅰ)證明:點(diǎn)在直線上;

(Ⅱ)設(shè),求外接圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案