(文)已知等差數(shù)列{an}和等比數(shù)列{bn}的通項公式分別為an=2(n-1)、,(其中n∈N*).
(1)求數(shù)列{an}前n項的和;
(2)求數(shù)列{bn}各項的和;
(3)設(shè)數(shù)列{cn}滿足,求數(shù)列{cn}前n項的和.
【答案】分析:(1)因為數(shù)列{an}是等差數(shù)列,所以欲求數(shù)列{an}前n項的和,只需找到首項,末項與項數(shù),代入等差數(shù)列的前n項和公式即可.
(2)數(shù)列{bn}各項的和,就是前n項和的極限,可用公式S=表示,所以只需求出等比數(shù)列{bn}的首項與公比,代入無窮等比數(shù)列各項的和公式即可.
(3)按照n是奇數(shù)還是偶數(shù)討論,n是奇數(shù)時,用等比數(shù)列的前n項和公式來求和,n是偶數(shù)時,用等差數(shù)列的前n項和公式來求和.
解答:解:(1)設(shè)數(shù)列前n項和為Sn,則.     
(2)公比,所以由無窮等比數(shù)列各項的和公式得:數(shù)列{bn}各項的和為=1.   
(3)設(shè)數(shù)列{cn}的前n項和為Tn,當n為奇數(shù)時,Tn=b1+a2+b3+…+an-1+bn=;  
當n為偶數(shù)時,Tn=b1+a2+b3+…+bn-1+an=.    

點評:本題主要考查了等差數(shù)列,等比數(shù)列的前n項的和.屬于數(shù)列的常規(guī)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文)已知等差數(shù)列{an}的前n項和為Sn,且S12=S36,S49=49
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=|an|,求數(shù)列{ bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知等差數(shù)列{an}的前n項和為Sn,若S17=a,則a2+a9+a16等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)(文)已知等差數(shù)列{an}的首項a1=0且公差d≠0,bn=2^an(n∈N*),Sn是數(shù)列{bn}的前n項和.
(1)求Sn;
(2)設(shè)Tn=
Sn
bn
(n∈N*),當d>0時,求
lim
n→+∞
Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青浦區(qū)二模)(文)已知等差數(shù)列{an}和等比數(shù)列{bn}的通項公式分別為an=2(n-1)、bn=(
1
2
)n
,(其中n∈N*).
(1)求數(shù)列{an}前n項的和;
(2)求數(shù)列{bn}各項的和;
(3)設(shè)數(shù)列{cn}滿足cn=
bn,(當n為奇數(shù)時)
an.(當n為偶數(shù)時)
,求數(shù)列{cn}前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年江西卷文)已知等差數(shù)列的前項和為,若,則     

查看答案和解析>>

同步練習冊答案