如圖,在四棱錐中,底面,,,,
.
(1)若E是PC的中點,證明:平面;
(2)試在線段PC上確定一點E,使二面角P- AB- E的大小為,并說明理由.
(1)先證,再證,利用線面垂直的判定定理即可證明
(2)
【解析】
試題分析:(1)證明:,,,
又,,, , 4 分
,,
又中,,,,
又是PC中點,
7分
(2)過E作交AC于G,過G作GH⊥AB,垂足為H,則由知 ,,是二面角的平面角的余角,即. 10分
設,,則, 12分
,
,
14分
方法二(向量法)
如圖,分別以為x,y,z軸建立空間直角坐標系,設
,則A(0,0,0),B(2,0,0),P(0,0,2),C(1,,0),E() 9分
設平面的一個法向量,則
由及得) 11分
而平面PAB的一法向量, 12分
,解得,即 14分
考點:本小題主要考查空間中線面垂直的證明和二面角的求解.
點評:解決立體幾何問題,可以用判定定理和性質定理進行證明,也可以用空間向量求解,兩種方法各有利弊,注意用傳統(tǒng)的方法證明或求解時,要緊扣相應的判定定理和性質定理,定理中要求的條件缺一不可,而如果用向量解決問題,要注意各個量尤其是角的取值范圍.
科目:高中數(shù)學 來源:2010-2011年廣西省桂林中學高二下學期期中考試數(shù)學 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知
.
(1)證明平面;
(2)求異面直線與所成的角的大。
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆福建省三明市高三第一學期測試理科數(shù)學試卷 題型:解答題
如圖,在四棱錐中,底面是菱形,,,,平面,是的中點,是的中點.
(Ⅰ) 求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆上海市高二年級期終考試數(shù)學 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知.
(1)證明平面;
(2)求異面直線與所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高二下學期期末考試附加卷數(shù)學卷 題型:解答題
如圖,在四棱錐中,底面是正方形,側棱,為中點,作交于
(1)求PF:FB的值
(2)求平面與平面所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.
(Ⅰ)當時,求證平面
(Ⅱ)當二面角的大小為時,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com