14.已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上.且經(jīng)過(guò)點(diǎn)M(1,2),
(1)求拋物線C的方程;
(2)若動(dòng)直線l過(guò)點(diǎn)P(3,0),交拋物線C于A,B兩點(diǎn),是否存在垂直于x軸的直線l'被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,求出l'的方程;若不存在,說(shuō)明理由.

分析 (1)可設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px,由曲線C經(jīng)過(guò)點(diǎn)P(1,2),得p=2,即可求解;
(2)由題意可得,AP的中點(diǎn)為C,設(shè)A(x1,y1),則C($\frac{{x}_{1}+3}{2}$,$\frac{{y}_{1}}{2}$).設(shè)D、E是圓C上的兩個(gè)點(diǎn),且DE垂直于x軸,DE的中點(diǎn)為H,點(diǎn)D(x2,y2),則H(x2,y3),求得|DC|和|CH|、|DH|2,可得當(dāng)x2=2時(shí),|DH|2=2,故弦長(zhǎng)為|DE|=2|DH|=2 $\sqrt{2}$為定值,由此可得結(jié)論

解答 解:(1)由題意,可設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px,
因?yàn)榍C經(jīng)過(guò)點(diǎn)P(1,2),所以p=2,
所以拋物線C的方程為y2=4x,
(2)由題意可得,AP的中點(diǎn)為C,設(shè)A(x1,y1),則C($\frac{{x}_{1}+3}{2}$,$\frac{{y}_{1}}{2}$).
設(shè)D、E是圓C上的兩個(gè)點(diǎn),且DE垂直于x軸,DE的中點(diǎn)為H,點(diǎn)D(x2,y2),則H(x2,y3),
∴|DC|=$\frac{1}{2}$|AP|=$\frac{1}{2}\sqrt{({x}_{1}-3)^{2}+{{y}_{1}}^{2}}$,|CH|=|$\frac{{x}_{1}+3}{2}-{x}_{2}$|=$\frac{1}{2}$|x1-2x2+3|,|DH|2=|DC|2-|HC|2=(x2-2)x1-x${{\;}_{2}}^{2}$+3x2
由x1的任意性可得,當(dāng)x2=2時(shí),|DH|2=-4+6=2,故弦長(zhǎng)為|DE|=2|DH|=2$\sqrt{2}$ 為定值.
故存在垂直于x軸的直線l(即直線DE),倍圓截得的弦長(zhǎng)為定值,直線l的方程為 x=2.

點(diǎn)評(píng) 本題主要考查用待定系數(shù)法求拋物線和雙曲線的標(biāo)準(zhǔn)方程,直線和圓相交的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x0)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,已知函數(shù)f(x)=3x+asinx-bcosx的拐點(diǎn)是M(x0,f(x0)),則點(diǎn)M( 。
A.在直線y=-3x上B.在直線y=3x上C.在直線y=-4x上D.在直線y=4x上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中$A=\frac{π}{3},b+c=4,E、F$為邊BC的三等分點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值為( 。
A.$\frac{{9\sqrt{3}}}{2}$B.$\frac{8}{3}$C.$\frac{26}{9}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知tan(π+α)=3,求(sinα+cosα)2+$\frac{4sinα-2cosα}{cosα+3sinα}$的值;
(2)已知cos($\frac{π}{6}$-θ)=a(|a|≤1),求cos($\frac{5π}{6}$+θ)和sin($\frac{2π}{3}$-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn),M,N分別是A1B1,BC,C1D1,B1C1的中點(diǎn),求二面角M-EF-N的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若無(wú)論m為何值時(shí),直線mx-y-(2m-1)=0總過(guò)一個(gè)定點(diǎn),則該定點(diǎn)的坐標(biāo)為(2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)U=R,A={x|mx2+8mx+21>0},∁UA=∅,則m的取值范圍是( 。
A.[0,$\frac{21}{16}$)B.{0}∪($\frac{21}{16}$,+∞)C.(-∞,0]D.(-∞,0]∪($\frac{21}{16}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,1),且離心率為$\frac{\sqrt{2}}{2}$,斜率為k的直線l與橢圓相交于P,Q兩點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線AP,AQ的斜率分別為k1,k2,且k1+k2=2,證明直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知銳角△ABC的外接圓O的半徑為1,∠B=$\frac{π}{6}$,則$\overrightarrow{BA}•\overrightarrow{BC}$的取值范圍為(3,$\frac{3}{2}+\sqrt{3}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案