精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
定義在上的奇函數,已知當時,
(1)寫出上的解析式
(2)求上的最大值
(3)若上的增函數,求實數的范圍。

(1)(2)當時,最大值為,當時,最大值為,當時,最大值為(3)

解析試題分析:(1)是奇函數
(2)設函數變形為對稱軸,當時,最大值,當時,最大值,當時,最大值
(3)函數是增函數,對稱軸,
考點:求分段函數解析式最值及單調性的應用
點評:本題第二問中求最值注意參數范圍的討論

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
已知函數,,記
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得,.若,求實數的值;
(Ⅲ)若對于一切恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數定義域為,且.
設點是函數圖像上的任意一點,過點分別作直線軸的垂線,垂足分別為

(1)寫出的單調遞減區(qū)間(不必證明);(4分)
(2)設點的橫坐標,求點的坐標(用的代數式表示);(7分)
(3)設為坐標原點,求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題9分)已知函數。
(Ⅰ)若上的最小值是,試解不等式;
(Ⅱ)若上單調遞增,試求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)已知是定義在[-1,1]上的奇函數,當,且時有.
(1)判斷函數的單調性,并給予證明;
(2)若對所有恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分15分) 已知函數f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調遞減區(qū)間;
(2)求f(x)圖象上與原點最近的對稱中心的坐標;
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
定義在上的偶函數,已知當時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)(1)已知函數,問方程在區(qū)間[-1,0]內是否有
解,為什么?
(2)若方程在(0,1)內恰有一解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個內接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設AE=,綠地面積為.

(1)寫出關于的函數關系式,并指出這個函數的定義域;
(2)當AE為何值時,綠地面積最大?  (10分) 

查看答案和解析>>

同步練習冊答案