【題目】已知ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,向量(cos B,cos C)(2ac,b),且

(1)求角B的大。

(2)b,求ac的范圍.

【答案】12(,2]

【解析】

1)利用平面向量的數(shù)量積運(yùn)算法則列出關(guān)系式,利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),求出cosB的值,即可確定出B的度數(shù);

2)由bcosB的值,利用余弦定理列出關(guān)系式,再利用基本不等式求出a+c的最大值,最后利用三角形兩邊之和大于第三邊求出a+c的范圍即可.

(1)(cos B,cos C),(2ac,b),且

(2ac)cos Bbcos C0,∴cos B(2sin Asin C)sin Bcos C0

2cos Bsin Acos Bsin Csin Bcos C0.即2cos Bsin A=-sin(BC)=-sin A

A(0,π),∴sin A≠0,∴cos B=-.∵0Bπ,∴B

(2)由余弦定理得

b2a2c22accosπa2c2ac(ac)2ac≥(ac)2- (ac)2,

當(dāng)且僅當(dāng)ac時(shí)取等號(hào).∴(ac)2≤4,故ac≤2

ac>b,∴ac(,2].即ac的取值范圍是(,2]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,是圓上除、外的一點(diǎn),平面,四邊形為平行四邊形,,

1)求證:平面;

(2)當(dāng)三棱錐體積取最大值時(shí),求此刻點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是一個(gè)正三棱臺(tái),而且下底面邊長(zhǎng)為2,上底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為1.O分別是下底面與上底面的中心.

1)求棱臺(tái)的斜高;

2)求棱臺(tái)的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面;

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三有名學(xué)生,按性別分層抽樣從高三學(xué)生中抽取名男生,名女生期未某學(xué)科的考試成績(jī),得到如下所示男生成績(jī)的頻率分布直方圖和女生成績(jī)的莖葉圖.

(1)試計(jì)算男生考試成績(jī)的平均分與女生考試成績(jī)的中位數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值);

(2)根據(jù)頻率分布直方圖可以認(rèn)為,男生這次考試的成績(jī)服從正態(tài)分布,試計(jì)算男生成績(jī)落在區(qū)間內(nèi)的概率及全校考試成績(jī)?cè)?/span>內(nèi)的男生的人數(shù)(結(jié)果保留整數(shù));

(3)若從抽取的名學(xué)生中考試成績(jī)優(yōu)勢(shì)(分以上包括分)的學(xué)生中再選取名學(xué)生,作學(xué)習(xí)經(jīng)驗(yàn)交流,記抽取的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù),若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,軸上的點(diǎn).

(1)過(guò)點(diǎn)作直線相切,求切線的方程;

(2)如果存在過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),且直線的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCDEPA的中點(diǎn),FBC的中點(diǎn),底面ABCD是菱形,對(duì)角線AC,BD交于點(diǎn)O.求證:

(1)平面EFO∥平面PCD;

(2)平面PAC⊥平面PBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)關(guān)于x的不等式:;;

1)分別求出的解集;

2)若同時(shí)滿(mǎn)足x值也滿(mǎn)足,求m的取值范圍;

3)若同時(shí)滿(mǎn)足x至少滿(mǎn)足的一個(gè),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案