已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y)對任意x、y∈R恒成立,在R上單調(diào)遞減.
(1)求證:f(x)是奇函數(shù);
(2)若對一切x∈[
π
4
,
π
2
]
,關(guān)于x的不等式f[2sin2(
π
4
+x)]-f(
3
cos2x)-f(m)<0
恒成立,求實(shí)數(shù)m的取值范圍.
.證明:(1)∵f(x+y)=f(x)+f(y)對任意x、y∈R恒成立
令x=y=0可得,f(0)=2f(0)
∴f(0)=0
令y=-x
∴f(0)=f(x)+f(-x)=0
∴f(-x)=-f(x)
∴函數(shù)f(x)是奇函數(shù);(4分)
(2)∵函數(shù)f(x)是奇函數(shù)
f[2sin2(
π
4
+x)]-f(
3
cos2x)-f(m)<0

f[2sin2(
π
4
+x)]<f(
3
cos2x)+f(m)

f[2sin2(
π
4
+x)]<f(
3
cos2x+m)
(6分)
又∵f(x)是R上的減函數(shù) 2sin2(
π
4
+x)>
3
cos2x+m
(8分)
2sin2(
π
4
+x)-
3
cos2x>m
對一切x∈[
π
4
,
π
2
]
恒成立
2sin2(
π
4
+x)-
3
cos2x=2sin(2x-
π
3
)+1
(10分)

當(dāng)x∈[
π
4
,
π
2
]
時(shí),2x-
π
3
∈[
π
6
3
]
,sin(2x-
π
3
)∈[
1
2
,1]
(12分)
2sin(2x-
π
3
)+1
的最小值為2,
∴m<2(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時(shí),f(x)=f(x-1);當(dāng)x<1時(shí),f(x)=2x,則f(log27)=( 。

查看答案和解析>>

同步練習(xí)冊答案