【題目】(1)選修4-2:矩陣與變換

求矩陣的特征值和特征向量.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程是參數(shù)),若圓與圓相切,求實(shí)數(shù)的值.

【答案】(1)屬于的一個(gè)特征向量,屬于的一個(gè)特征向量為

(2),或.

【解析】試題分析:1求得矩陣的特征多項(xiàng)式,求得M的特征值,分別將特征值代入二元一次方程組,即可求得其特征向量;(2根據(jù)圓的極坐標(biāo)方程和參數(shù)方程化圓方程為直角坐標(biāo)方程,利用兩圓相切即可求出.

試題解析:

(1)

可得: , .

可得屬于的一個(gè)特征向量

可得屬于的一個(gè)特征向量為

(2) ,圓心,半徑

,圓心,邊境.

圓心距,

兩圓外切時(shí), , ;

兩圓內(nèi)切時(shí), .

綜上, ,或.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,

(1)設(shè),若f(A)=0,求角A的值;

(2)若對任意的實(shí)數(shù)t,恒有,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)求曲線處的切線方程.

)求的單調(diào)區(qū)間.

)設(shè),其中,證明:函數(shù)僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R).

(Ⅰ)若a=1,求曲線f(x)在點(diǎn)(e,f(e))處的切線方程;

(Ⅱ)求f(x)的極值;

(Ⅲ)若函數(shù)f(x)的圖象與函數(shù)g(x)=1的圖象在區(qū)間(0,e2]上有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一水域上建一個(gè)演藝廣場.演藝廣場由看臺Ⅰ,看臺Ⅱ,三角形水域,及矩形表演臺四個(gè)部分構(gòu)成(如圖).看臺Ⅰ,看臺Ⅱ是分別以, 為直徑的兩個(gè)半圓形區(qū)域,且看臺Ⅰ的面積是看臺Ⅱ的面積的3倍;矩形表演臺中, 米;三角形水域的面積為平方米.設(shè).

(Ⅰ)當(dāng)時(shí),求的長;

(Ⅱ)若表演臺每平方米的造價(jià)為萬元,求表演臺的最低造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856308)(12分)

如圖,∠ABCOAB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AOPO,OA=1,且DAPO.

(Ⅰ)求證:平面PBD⊥平面COD

(Ⅱ)求點(diǎn)O到平面BDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856336)[選修4-5:不等式選講]

已知函數(shù)f(x)=.

(Ⅰ)解不等式:f(x)<2;

(Ⅱ)若x∈R,f(x)≥t2t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:關(guān)于x的二次方程x2(a1)xa20的一個(gè)根大于零,另一根小于零;命題q:不等式2x2x>2axx(,-1)恒成立.如果命題pq為真命題,命題pq為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案