【題目】若函數(shù)y=f(x)在區(qū)間I上是增函數(shù),且函數(shù) 在區(qū)間I上是減函數(shù),則稱(chēng)函數(shù)f(x)是區(qū)間I上的“H函數(shù)”.對(duì)于命題:①函數(shù) 是(0,1)上的“H函數(shù)”;②函數(shù) 是(0,1)上的“H函數(shù)”.下列判斷正確的是( )
A.①和②均為真命題
B.①為真命題,②為假命題
C.①為假命題,②為真命題
D.①和②均為假命題
【答案】B
【解析】解:對(duì)于命題①:令t= ,函數(shù) =﹣t2+2t,∵t= 在(0,1)上是增函數(shù), 函數(shù)y=﹣t2+2t在(0,1)上是增函數(shù),∴在(0,1)上是增函數(shù);
G(x)= 在(0,1)上是減函數(shù),
∴函數(shù) 是(0,1)上的“H函數(shù)“,故命題①是真命題.
對(duì)于命題②,函數(shù) = 是(0,1)上的增函數(shù),H(x)= 是(0,1)上的增函數(shù),故命題②是假命題;
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸長(zhǎng)為2 ,離心率為 ,點(diǎn)F為其在y軸正半軸上的焦點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)若一動(dòng)圓過(guò)點(diǎn)F,且與直線y=﹣1相切,求動(dòng)圓圓心軌跡C1的方程;
(Ⅲ)過(guò)F作互相垂直的兩條直線l1 , l2 , 其中l(wèi)1交曲線C1于M、N兩點(diǎn),l2交橢圓C于P、Q兩點(diǎn),求四邊形PMQN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠A=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),且| |=3,| |=4, =λ +μ (λ>0,μ>0),則當(dāng)λμ取得最大值時(shí),| |的值為( )
A.
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別是橢圓C: =1(a>b>0)的兩個(gè)焦點(diǎn),P(1, )是橢圓上一點(diǎn),且 |PF1|,|F1F2|, |PF2|成等差數(shù)列.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F2 , 且與橢圓C交于A、B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 =﹣ 恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=2lnx+ . (Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對(duì)所有的x≥1,都有f(x)≤ax,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:在定義域內(nèi)存在實(shí)數(shù)t,使得f(t+2)=f(t)+f(2).
(1)判斷f(x)=3x+2是否屬于集合M,并說(shuō)明理由;
(2)若 屬于集合M,求實(shí)數(shù)a的取值范圍;
(3)若f(x)=2x+bx2 , 求證:對(duì)任意實(shí)數(shù)b,都有f(x)∈M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“讀好書(shū),好讀書(shū)”活動(dòng),要求本學(xué)期每人至少讀一本課外書(shū),該校高一共有100名學(xué)生,他們本學(xué)期讀課外書(shū)的本數(shù)統(tǒng)計(jì)如圖所示. (Ⅰ)求高一學(xué)生讀課外書(shū)的人均本數(shù);
(Ⅱ)從高一學(xué)生中任意選兩名學(xué)生,求他們讀課外書(shū)的本數(shù)恰好相等的概率;
(Ⅲ)從高一學(xué)生中任選兩名學(xué)生,用ζ表示這兩人讀課外書(shū)的本數(shù)之差的絕對(duì)值,求隨機(jī)變量ζ的分布列及數(shù)學(xué)期望E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x+1)定義域是[﹣2,3],則y=f(2x﹣1)的定義域( )
A.
B.[﹣1,4]
C.[﹣5,5]
D.[﹣3,7]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足sin = , =6.
(1)求△ABC的面積;
(2)若c+a=8,求b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com