設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,則n的所有可能值為( )
A.3
B.4
C.2和5
D.3和4
【答案】分析:分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,組成一個(gè)有序數(shù)對(duì),共有2×3中方法,要計(jì)算事件Cn的概率最大時(shí)n的所有可能值,要把題目中所有的情況進(jìn)行分析求解,比較出n的所有可能值.
解答:解:事件Cn的總事件數(shù)為6.只要求出當(dāng)n=2,3,4,5時(shí)的基本事件個(gè)數(shù)即可.
當(dāng)n=2時(shí),落在直線x+y=2上的點(diǎn)為(1,1);
當(dāng)n=3時(shí),落在直線x+y=3上的點(diǎn)為(1,2)、(2,1);
當(dāng)n=4時(shí),落在直線x+y=4上的點(diǎn)為(1,3)、(2,2);
當(dāng)n=5時(shí),落在直線x+y=5上的點(diǎn)為(2,3);
顯然當(dāng)n=3,4時(shí),事件Cn的概率最大為,
故選D
點(diǎn)評(píng):古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題可以列舉出所有事件,概率問題同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問題為載體,主要考查的是另一個(gè)知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合A={1,2,3},滿足B=A∩B的集合B的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b.
(Ⅰ)若向量
m
=(a,b),
n
=(1,-1)
,求向量
m
n
的夾角為銳角的概率;
(Ⅱ) 記點(diǎn)P(a,b),則點(diǎn)P(a,b)落在直線x+y=n上為事件Cn(2≤n≤5,n∈N),求使事件Cn的概率最大的n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},B={1,2,3},分別從集合A和B中隨機(jī)取一個(gè)數(shù)a和b,確定平面上的一個(gè)點(diǎn)P(a,b),記“點(diǎn)P(a,b)落在直線x+y=3上”為事件C,則C的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2,3},B={2,3,4,5},則A∩B=
{2,3}
{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2,3,4},B={3,4,5},則滿足S⊆A且S∩B≠∅,試寫出滿足條件的所有集合S有
12
12
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案