【題目】已知拋物線,直線、(),與恰有一個(gè)公共點(diǎn),與恰有一個(gè)公共點(diǎn),與交于點(diǎn).
(1)當(dāng)時(shí),求點(diǎn)到準(zhǔn)線的距離;
(2)當(dāng)與不垂直時(shí),求的取值范圍;
(3)設(shè)是平面上一點(diǎn),滿足且,求和的夾角大小.
【答案】(1) (2) (3)
【解析】
(1),,因?yàn)?/span>與恰有一個(gè)公共點(diǎn),,所以,再求出拋物線的準(zhǔn)線方程和點(diǎn)到準(zhǔn)線的距離.(2)由可得,所以.(3) 由題得, 聯(lián)立與得,聯(lián)立與得,再求出,根據(jù),求得,
解方程得,所以,即得和的夾角為.
(1),,
∵與恰有一個(gè)公共點(diǎn),,∴,
因?yàn)閽佄锞準(zhǔn)線為,所以點(diǎn)到準(zhǔn)線的距離.
(2)由可得,,消去得,
整理得,∴
(3)由題得, 聯(lián)立與得,聯(lián)立與得,
∵,∴,與聯(lián)立得,
由第(2)問結(jié)論,,,消去a得,
∴,∵,據(jù)此,
∴,解得,,∴和的夾角為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是中國建設(shè)史上里程最長,投資最多,難度最大的跨海橋梁項(xiàng)目,大橋建設(shè)需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些橋梁構(gòu)件質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;
(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,為坐標(biāo)原點(diǎn),為橢圓的左焦點(diǎn),離心率為,直線與橢圓相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)若是弦的中點(diǎn),是橢圓上一點(diǎn),求的面積最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓的方程;
(2)是否存在經(jīng)過點(diǎn)的直線,它與橢圓相交于兩個(gè)不同點(diǎn),且滿足為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)也在橢圓上,如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限(年)與所支出的維修費(fèi)用(萬元)有以下統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關(guān)關(guān)系.試求:
(1)求;
(2)線性回歸方程;
(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?
附:利用“最小二乘法”計(jì)算的值時(shí),可根據(jù)以下公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、、是同一平面上不共線的四點(diǎn),若存在一組正實(shí)數(shù)、、,使得,則三個(gè)角、、( )
A. 都是鈍角B. 至少有兩個(gè)鈍角
C. 恰有兩個(gè)鈍角D. 至多有兩個(gè)鈍角
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為,作平面與底面不平行與棱,,,分別交于E,F,G,H,記EA,FB,GC,HD分別為,,,,若,,則多面體EFGHABCD的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程及曲線的直角坐標(biāo)方程,并指出兩曲線的軌跡圖形;
(2)曲線與兩坐標(biāo)軸的交點(diǎn)分別為、,點(diǎn)在曲線上運(yùn)動(dòng),當(dāng)曲線與曲線相切時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計(jì)劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)(),當(dāng)為何值時(shí),該計(jì)劃所需總費(fèi)用最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com