6.面積為14的三角形有兩邊之差為2,夾角的余弦值為$\frac{3}{5}$,則這兩邊的邊長分別為( 。
A.3和5B.4和6C.5和7D.6和8

分析 利用同角三角函數(shù)基本關(guān)系式可得出sinB,再利用面積公式S△ABC=$\frac{1}{2}$acsinB,即可得出ac的值,與a-c=2聯(lián)立即可得出a,c得值,從而得解.

解答 解:如圖所示,
假設(shè)已知a-c=2,cosB=$\frac{3}{5}$,S△ABC=14.
∵0<B<π,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$.
又14=$\frac{1}{2}$acsinB,
∴ac=35.
聯(lián)立$\left\{\begin{array}{l}{a-c=2}\\{ac=35}\end{array}\right.$,
∵a,c>0,解得a=7,c=5.
故選:C.

點(diǎn)評 本題考查余弦定理的應(yīng)用.熟練掌握平方關(guān)系和面積公式S△ABC=$\frac{1}{2}$acsinB.以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$a={2^{0.5}},b=ln2,c={log_2}sin\frac{2π}{5}$,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A、B、C的對邊分別是a、b、c,a=2$\sqrt{3}$,$\frac{asinA+bsinA-csinC}{sinBsinC}$=4,若b∈[1,3],則c的最小值為( 。
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)求函數(shù)$y={x^4}-\frac{1}{3}{x^3}$的極值.
(2)求由直線y=x-2和曲線y=-x2所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)組(x1,y1),(x2,y2),…,(x20,y20)滿足線性回歸方程$\widehaty=\widehatbx+\widehata$,則(x0,y0)滿足線性回歸方程$\widehaty=\widehatbx+\widehata$是“x0=$\frac{{{x_1}+{x_2}+…+{x_{20}}}}{20}$,y0=$\frac{{{y_1}+{y_2}+…+{y_{20}}}}{20}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等比數(shù)列{an}中,a1>0,a2a4=25,則a3=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知隨機(jī)變量ξ滿足Dξ=2,則D(2ξ+3)=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若x>0,y>0,且x+2y=1,則$\frac{1}{x}$+$\frac{1}{y}$的取值范圍是[3+$2\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.有下列說法:
①函數(shù)y=-cos2x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③在同一直角坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點(diǎn);
④函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)可以改寫為y=4cos(2x-$\frac{π}{6}$);
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù).
其中,正確的說法是①④.

查看答案和解析>>

同步練習(xí)冊答案