3.不等式組$\left\{\begin{array}{l}x-y-1≥0\\ y≥-1\\ x+y-3≤0\end{array}\right.$表示的平面區(qū)域是一個三角形,則這三角形的面積為2.

分析 由約束條件作出可行域,求出三角形三個頂點的坐標(biāo),得到|AB|,再由三角形面積公式得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y-1≥0\\ y≥-1\\ x+y-3≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{y=-1}\\{x+y-3=0}\end{array}\right.$,解得B(4,-1),
聯(lián)立$\left\{\begin{array}{l}{x-y-1=0}\\{x+y-3=0}\end{array}\right.$,解得C(2,1),又A(0,-1),
∴|AB|=4,
則${S}_{△ABC}=\frac{1}{2}×4×1=2$.
故答案為:2.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)向量$\overrightarrow a=(sinx,\sqrt{3}cosx),\overrightarrow b=(-1,1),\overrightarrow c=(1,1)$.(其中x∈[0,π])
(1)若$(\overrightarrow a+\overrightarrow b)∥\overrightarrow c$,求實數(shù)x的值;
(2)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求函數(shù)$sin(x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的前n項和為Sn,a7=$\frac{1}{64}$,a2=$\frac{1}{2}$.
(Ⅰ)求數(shù)列{an}的通項公式及前n項和為Sn;
(Ⅱ)若bn=log2(2-Sn),數(shù)列{bn}的前n項和為Tn,求數(shù)列$\left\{{\frac{1}{T_n}}\right\}$(n≥2)的前n項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3-3.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過兩點A(m2+2,3-m2),B(3-m-m2,-2m)的直線l的傾斜角為135°,則m的值為( 。
A.-1或-2B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)將二次函數(shù)h(x)=x2的圖象先向右平移1個單位,再向下平移2個單位得到函數(shù)f(x)的圖象,寫出函數(shù)f(x)的解析式,并求出x∈[0,4]時函數(shù)f(x)的值域.
(2)求f(x)=x2-2ax-1在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)在區(qū)間[0,10]中任意取一個數(shù),求它與4之和大于10的概率
  (2)在區(qū)間[0,10]中任意取兩個數(shù),求它們之和大于9的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:$2{log_5}10+{log_5}0.25+{2^{{{log}_2}3}}$
(2)計算:${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)設(shè)p:x∈[$\frac{π}{4}$,$\frac{π}{2}$],q:|f(x)-m|<3,若p是q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案