(1)已知兩個等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項公式;若不存在,說明理由.
(1) a= (2) 不存在,理由見解析
【解析】
解:(1)設等比數(shù)列{an}的公比為q,
則b1=1+a,b2=2+aq,b3=3+aq2,
由b1,b2,b3成等比數(shù)列,得(2+aq)2=(1+a)(3+aq2),
即aq2-4aq+3a-1=0,(*)
由a>0得Δ=4a2+4a>0,故方程(*)有兩個不同的實數(shù)根,
再由{an}唯一,知方程(*)必有一根為0,將q=0代入方程(*)得a=.
(2)假設存在兩個等比數(shù)列{an},{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列,設等比數(shù)列{an}的公比為q1,等比數(shù)列{bn}的公比為q2,
則b2-a2=b1q2-a1q1,
b3-a3=b1-a1,
b4-a4=b1-a1,
∵b1-a1,b2-a2,b3-a3,b4-a4成等差數(shù)列,得
即
即
①×q2-②得a1(q1-q2)(q1-1) 2=0,
由a1≠0得q1=q2或q1=1.
(ⅰ)當q1=q2時由①②得b1=a1或q1=q2=1,
這時(b2-a2)-(b1-a1)=0與公差不為0矛盾.
(ⅱ)當q1=1時,由①②得b1=0或q2=1,
這時(b2-a2)-(b1-a1)=0與公差不為0矛盾.
綜上所述,不存在兩個等比數(shù)列{an}{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省南京市高淳縣湖濱高級中學高二(上)9月月考數(shù)學試卷(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州市高一(下)期末數(shù)學試卷(解析版) 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州中學高一(下)期末數(shù)學試卷(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com