已知:點P為線段AB上的動點(與A,B兩點不重合).在同一平面內(nèi),把線段AP,BP分別折成△CDP,△EFP,其中∠CDP=∠EFP=90°,且D,P,F(xiàn)三點共線,如圖所示.
(1)若△CDP,△EFP均為等腰三角形,且DF=2,求AB的長.
(2)若,且以C,D,P為頂點的三角形和以E,F(xiàn),P為頂點的三角形相似,求四邊形CDFE的面積的最小值.

【答案】分析:(1)不妨設(shè)DP=x,PF=y,由△CDP和△EFP都是等腰直角三角形,且∠CDP=∠EFP=90°,可求得PC,PE,由DF=2,可求AB的長;
(2)根據(jù)tan∠C=,且以C,D,P為頂點的三角形和以E,F(xiàn),P為頂點的三角形相似,可分當∠DCP=∠FEP與當∠DCP=∠FPE兩種情況討論,利用勾股定理與不等式解決.
解答:解:(1)設(shè)DP=x,PF=y…(1分)
∵△CDP和△EFP都是等腰直角三角形,且∠CDP=∠EFP=90°,
∴CD=DP=x,EF=PF=y,PC=y.
∴AB=AP+PB=CD+DP+PC+PF+EF+PE=x+x+y=(2+)(x+y).
∵DF=2,∴x+y=2…(3分)
∴AB=(2+)×2=4+2.…(5分)
(2)連接CE
由于tan∠C=,且以C,D,P為頂點的三角形和以E,F(xiàn),P為頂點的三角形相似,因此分兩種情況考慮:
當∠DCP=∠FEP時,設(shè)DP=4m,PF=4n,則CD=3m,EF=3n,
根據(jù)勾股定理,可得CP=5m,PE=5n,
∵AB=12(m+n)=12,∴m+n=1.…(7分)
∴S四邊形CDFE=)=6(m+n)2=6…(9分)
當∠DCP=∠FPE時,設(shè)DP=4m,PF=3n,則CD=3m,EF=4n.
根據(jù)勾股定理,可得CP=5m,PE=5n.
∵AB=12(m+n)=12,∴m+n=1.
∵m>0,n>0,∴S四邊形CDFE=)=)=]=)=6+mn>6…(11分)
綜上所述,四邊形CDFE的面積的最小值為6…(12分)
點評:本題考查三角形中的計算,難點在于(2)中需分∠DCP=∠FEP與∠DCP=∠FPE兩種情況解決,著重考查學生分析問題與綜合運用知識解決問題的能力,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在等邊三角形ABC中,點P為線段AB上一點,且
AP
AB
(0≤λ≤1)

(1)若等邊三角形邊長為6,且λ=
1
3
,求
|CP
|
;
(2)若
CP
AB
PA
PB
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以點P為圓心的圓經(jīng)過點A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點C和D,且|CD|=4
10

(1)求直線CD的方程;
(2)求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:點P為線段AB上的動點(與A,B兩點不重合).在同一平面內(nèi),把線段AP,BP分別折成△CDP,△EFP,其中∠CDP=∠EFP=90°,且D,P,F(xiàn)三點共線,如圖所示.
(1)若△CDP,△EFP均為等腰三角形,且DF=2,求AB的長.
(2)若AB=12,tan∠C=
43
,且以C,D,P為頂點的三角形和以E,F(xiàn),P為頂點的三角形相似,求四邊形CDFE的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:點P為線段AB上的動點(與A,B兩點不重合).在同一平面內(nèi),把線段AP,BP分別折成△CDP,△EFP,其中∠CDP=∠EFP=90°,且D,P,F(xiàn)三點共線,如圖所示.
(1)若△CDP,△EFP均為等腰三角形,且DF=2,求AB的長.
(2)若數(shù)學公式,且以C,D,P為頂點的三角形和以E,F(xiàn),P為頂點的三角形相似,求四邊形CDFE的面積的最小值.

查看答案和解析>>

同步練習冊答案