如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn).當(dāng)直線經(jīng)過(guò)橢圓的一個(gè)頂點(diǎn)時(shí),其傾斜角恰為

(Ⅰ)求該橢圓的離心率;

(Ⅱ)設(shè)線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),

記△的面積為,△為原點(diǎn))的面積為,求的取值范圍.

 

【答案】

(Ⅰ). (Ⅱ)的取值范圍是

【解析】

試題分析:(Ⅰ)解:依題意,當(dāng)直線經(jīng)過(guò)橢圓的頂點(diǎn)時(shí),其傾斜角為   1分

.                          2分

 代入

解得 .                                    3分

所以橢圓的離心率為 .                     4分

(Ⅱ)解:由(Ⅰ),橢圓的方程可設(shè)為.          5分

設(shè)

依題意,直線不能與軸垂直,故設(shè)直線的方程為,將其代入

.            7分

,,

.                     8分

因?yàn)?,

所以 ,.              9分

因?yàn)?△∽△

所以           11分

.                13分

所以的取值范圍是.                   14分

考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,三角形面積計(jì)算。

點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。對(duì)于三角形面積計(jì)算問(wèn)題,注意應(yīng)用已有垂直關(guān)系及弦長(zhǎng)公式。本題應(yīng)用韋達(dá)定理,簡(jiǎn)化了解題過(guò)程。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分16分)

如圖,橢圓的左焦點(diǎn)為,上頂點(diǎn)為,過(guò)點(diǎn)作直線的垂線分別交橢圓、軸于兩點(diǎn).⑴若,求實(shí)數(shù)的值;

⑵設(shè)點(diǎn)的外接圓上的任意一點(diǎn),

當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省“十二!备呷2次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過(guò)的直線交橢圓于兩點(diǎn), 的周長(zhǎng)為8,且面積最大時(shí),為正三角形

1)求橢圓的方程;

2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省蘇州市高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A作直線AF的垂線分別交橢圓、x軸于B,C兩點(diǎn).
(1)若,求實(shí)數(shù)λ的值;
(2)設(shè)點(diǎn)P為△ACF的外接圓上的任意一點(diǎn),當(dāng)△PAB的面積最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市崇明縣高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,過(guò)F1的直線交橢圓于A,B兩點(diǎn),△ABF2的周長(zhǎng)為8,且△AF1F2面積最大時(shí),△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:①以PQ為直徑的圓與x軸的位置關(guān)系?
②在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案