已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當(dāng)m=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個極值點,求m的取值范圍.

解:(Ⅰ)m=2時,f(x)=2x2-2ex,f'(x)=4x-2ex=2(2x-ex).
令g(x)=2x-ex,g'(x)=2-ex,(2分)
當(dāng)x∈(-∞,ln2)時,g'(x)>0,x∈(ln2,+∞)時,g'(x)<0
∴g(x)≤g(ln2)=2ln2-2<0.
∴f'(x)<0.∴f(x)在(-∞,+∞)上是單調(diào)遞減函數(shù).(4分)
(Ⅱ)①若f(x)有兩個極值點a,b(a<b),
則a,b是方程f'(x)=2mx-2ex=0的兩不等實根.
∵x=0顯然不是方程的根,∴有兩不等實根.(6分)
,則
當(dāng)x∈(-∞,0)時,h'(x)<0,h(x)單調(diào)遞減,h(x)∈(-∞,0),
當(dāng)x∈(0,1)時,h'(x)<0,h(x)單調(diào)遞減,
x∈(1,+∞)時,h'(x)>0,h(x)單調(diào)遞增,
要使有兩不等實根,應(yīng)滿足m>h(1)=e,
∴m的取值范圍是(e,+∞)…(12分)
分析:(Ⅰ)把m=2代入可得函數(shù)解析式,求導(dǎo)數(shù)可得單調(diào)區(qū)間,進而可得最值,可證f'(x)<0,可得單調(diào)區(qū)間;(Ⅱ)可得a,b是方程f'(x)=2mx-2ex=0的兩不等實根,令,求導(dǎo)數(shù)可得單調(diào)性,進而可得只需m>h(1)即可,進而可得m的范圍.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,涉及函數(shù)的單調(diào)性,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(1)若函數(shù)f(x)沒有零點,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)存在極大值,并記為g(m),求g(m)的表達(dá)式;
(3)當(dāng)m=0時,求證:f(x)≥x2+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,函數(shù)f(x)=(x2+mx+m)ex
(Ⅰ)若m=-1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)沒有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當(dāng)m=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩極值點a,b(a<b),(。┣髆的取值范圍;(ⅱ)求證:-e<f(a)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)已知m∈R,函數(shù)f(x)=mx2-2ex
(Ⅰ)當(dāng)m=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個極值點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,函數(shù)f(x)=mx-
m-1
x
-lnx
g(x)=
1
2
+lnx

(I)求g(x)的極小值;
(Ⅱ)若y=f(x)-g(x)在[1,+∞)上為單調(diào)增函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)證明:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n2
2(n+1)
(n∈N*)

查看答案和解析>>

同步練習(xí)冊答案