8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0;②當(dāng)-1≤x≤3時,y<0;③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2;④9a+3b+c=0其中正確的是( 。
A.①②④B.①④C.①②③D.③④

分析 由拋物線與x軸的交點求得對稱軸x=1,判斷①;根據(jù)圖象判斷-1<x<3時,y的符號判斷②;根據(jù)二次函數(shù)的性質(zhì)即可判斷③,由x=3時,y=0,判斷②

解答 解:∵拋物線與x軸的交點為(-1,0),(3,0),
∴對稱軸x═1,
∴-$\frac{2a}$=1,
∴2a+b=0,故①正確;
由圖可知,當(dāng)-1<x<3時,y<0,故②錯誤;
∵拋物線開口向上,對稱軸x=1,根據(jù)拋物線的性質(zhì)在對稱軸右側(cè)y隨x的增大而增大,在對稱軸的左側(cè),y隨x的增大而減小,
∴當(dāng)x1<x2時,無法判斷y1,y2的大小,故③錯誤.
∵當(dāng)x=3時,y=0,
∴9a+3b+c=0,故④正確;
故選:B

點評 本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與一元一次不等式的關(guān)系,難度適中

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)y=cos(ωx-$\frac{π}{3}$)(ω∈N*)圖象的一條對稱軸是x=$\frac{π}{6}$,則ω的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知橢圓$\frac{x^2}{a^2}+{y^2}=1(a>1)$的長軸長是短軸長的2倍,右焦點為F,點B,C分別是該橢圓的上、下頂點,點P是直線l:y=-2上的一個動點(與y軸交點除外),直線PC交橢圓于另一點M,記直線BM,BP的斜率分別為k1,k2
(1)當(dāng)直線PM過點F時,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并確定此時直線PM的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將一個樣本容量為50的數(shù)據(jù)分組,各組的頻數(shù)如下:[17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29],10;(29,31],8;(31,33],6.根據(jù)樣本頻率分布,估計小于或等于31的數(shù)據(jù)大約占總體的( 。
A.88%B.42%C.40%D.16%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$sinα=-\frac{{\sqrt{5}}}{5}$,α為第四象限角,求$\frac{cosα+sinα}{cosα-sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖四棱錐P-ABCD,四邊形ABCD是正方形,O是正方形的中心,E是PC的中點,且PA=AB=PB.
(1)求證:PA∥平面BDE;
(2)求EO與AB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.以下四個關(guān)于圓錐曲線的命題:
①在直角坐標(biāo)平面內(nèi),到點(-1,2)和到直線2x+3y-4=0距離相等的點的軌跡是拋物線;
②設(shè)F1、F2為兩個定點,k為非零常數(shù),若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=k,則P點的軌跡為雙曲線;
③方程4x2-8x+3=0的兩根可以分別作為橢圓和雙曲線的離心率;
④過單位圓O上一定點A作圓的動弦AB,O為坐標(biāo)原點,若$\overrightarrow{OP}$=($\overrightarrow{OA}$+$\overrightarrow{OB}$),則動點P的軌跡為橢圓.
其中真命題的序號為③.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,則不等式f(x)>f(2x-4)的解集為( 。
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線(k+1)x+ky-1=0與兩坐標(biāo)軸圍成的三角形面積為Sk,則S1+S2+…+Sk=$\frac{k}{2(k+1)}$.

查看答案和解析>>

同步練習(xí)冊答案