某服裝商場為了了解毛衣的月銷售量(件)與月平均氣溫(℃)之間的關系,隨機統(tǒng)計了某4個月的月銷售量與當月平均氣溫,其數(shù)據(jù)如下表:

月平均氣溫
17
13
8
2
月銷售量(件)
24
33
40
55
(1)做出散點圖;
(2) 求線性回歸方程 ;
(3)氣象部門預測下個月的平均氣溫約為6ºC,據(jù)此估計該商場下個月毛衣的銷售量.(   ,

(1)
,(2) (3) 46件。

解析試題分析:(1)
……2分
(2) ,  3分
 5分
 7分
線性回歸方程為  8分
(3)當時,,
因此估計下月毛衣銷量約為46件。10分
考點:本題考查了回歸直線方程的運用
點評:求回歸直線方程的步驟是:①作出散點圖,判斷散點是否在一條直線附近;②如果散點在一條直線附近,由公式求出a、b的值,并寫出線性回歸方程。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

為了加強中學生實踐、創(chuàng)新能力和團隊精神的培養(yǎng),促進教育教學改革,市教育局舉辦了全市中學生創(chuàng)新知識競賽,某中學舉行了選拔賽,共有150名學生參加,為了了解成績情況,從中抽取了50名學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表,解答下列問題:

(Ⅰ)完成頻率分布表(直接寫出結果),并作出頻率分布直方圖;
(Ⅱ)若成績在95.5分以上的學生為一等獎,試估計全校獲一等獎的人數(shù),現(xiàn)在從全校所有一等獎的同學中隨機抽取2名同學代表學校參加決賽,某班共有2名同學榮獲一等獎,求該班同學參加決賽的人數(shù)恰為1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學舉行了一次“環(huán)保知識競賽”,全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
頻率分布表

組別
分組
頻數(shù)
頻率
第1組
[50,60)
8
0.16
第2組
[60,70)
a

第3組
[70,80)
20
0.40
第4組
[80,90)

0.08
第5組
[90,100]
2
b
 
合計


頻率分布直方圖

、
(Ⅰ)寫出的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動,設表示所抽取的2名同學中來自第5組的人數(shù),求的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關,從馬路旁隨機抽取名路人進行了問卷調查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
 已知在這人中隨機抽取人抽到反感“中國式過馬路 ”的路人的概率是.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料判斷是否有95%的把握認為反感“中國式過馬路 ”與性別有關?
(Ⅱ)若從這人中的女性路人中隨機抽取人參加一活動,記反感“中國式過馬路”的人數(shù)為,求的分布列.      
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校從高一年級學生中隨機抽取40名學生作為樣本,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六組:, ,后得到如圖的頻率分布直方圖.

(Ⅰ)求圖中實數(shù)的值;
(Ⅱ)若該校高一年級共有學生500人,試估計該校高一年級在考試中成績不低于60分的人數(shù);
(Ⅲ)若從樣本中數(shù)學成績在兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,試用列舉法求這兩名學生的數(shù)學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日 期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差x(°C)
10
11
13
12
8
6
就診人數(shù)y(個)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求
線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關于x
的線性回歸方程;
(Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2
人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理
想?
(參考公式:)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在某大學自主招生考試中,所有選報II類志向的考生全部參加了“數(shù)學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級. 某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人.

(Ⅰ)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(Ⅱ)若等級A,B,C,D,E分別對應5分,4分,3分,2分,1分.
(i)求該考場考生“數(shù)學與邏輯”科目的平均分;
(ii)若該考場共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 從這10
人中隨機抽取兩人,求兩人成績之和的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173 cm的同學,求身高為176 cm的同學被抽中的概率.

查看答案和解析>>

同步練習冊答案