定義y=log1+xf(x,y),f(x,y)=(1+x)y(x>0,y>0)
(1)比較f(1,3)與f(2,2)的大小;
(2)若e<x<y,證明:f(x-1,y)>f(y-1,x);
(3)設(shè)g(x)=f(1,log2(x3+ax2+bx+1))的圖象為曲線C,曲線C在x0處的切線斜率為k,若x0∈(1,1-a),且存在實(shí)數(shù)b,使得k=-4,求實(shí)數(shù)a的取值范圍.
分析:(1)、由定義知f(x,y)=(1+x)y(x>0,y>0),分別求出f(1,3)與f(2,2)的值后再進(jìn)行比較.
(2)、要證f(x-1,y)>f(y-1,x),只要證xy>yx即可.
(3)、由題意知:g(x)=x3+ax2+bx+1,且g'(x0)=k,于是有3x02+2ax0+b=-4在x0∈(1,1-a)上有解.又由定義知log2(x03+ax02+bx0+1)>0即x03+ax02+bx0>0.然后再分類討論,求出實(shí)數(shù)a的取值范圍.
解答:解:(1)由定義知f(x,y)=(1+x)
y(x>0,y>0)
∴f(1,3)=(1+1)
3=8,f(2,2)
2=9∴f(1,3)<f(2,2).
(2)f(x-1,y)=x
y,f(y-1,x)=y
x要證f(x-1,y)>f(y-1,x),只要證x
y>y
x∵
xy>yx?ylnx>xlny?>令
h(x)=,則
h′(x)=,當(dāng)x>e時(shí),h'(x)<0
∴h(x)在(e,+∞)上單調(diào)遞減.
∵e<x<y∴h(x)>h(y)即
>∴不等式f(x-1,y)>f(y-1,x)成立.
(3)由題意知:g(x)=x
3+ax
2+bx+1,且g'(x
0)=k
于是有3x
02+2ax
0+b=-4在x
0∈(1,1-a)上有解.
又由定義知log
2(x
03+ax
02+bx
0+1)>0即x
03+ax
02+bx
0>0
∵x
0>1∴x
02+ax
0>-b
∴x
02+ax
0>3x
02+2ax
0+4即ax
0<-2(x
02+2)
∴
a<-2(x0+)在x
0∈(1,1-a)有解.
設(shè)
V(x0)=x0+,x0∈(1,1-a)①當(dāng)
1-a>即
a<1-時(shí),
V(x0)=x0+≥
2.
當(dāng)且僅當(dāng)
x0=時(shí),
V(x0)min=2∴當(dāng)
x0=時(shí),
-2(x0+)max=-4∴
a<-4.
②當(dāng)1<1-a≤
時(shí),即
1-≤a<0時(shí),
V(x0)=x0+在x
0∈(1,1-a)上遞減,
∴
x0+>1-a+.∴
a<-2[(1-a)+]整理得:a
2-3a+6<0,無解.
綜上所述,實(shí)數(shù)a的取值范圍為
(-∞,-4).
點(diǎn)評:本題是對數(shù)函數(shù)的綜合題,在解題過程中除正確運(yùn)用對數(shù)的圖象和性質(zhì),還要充分考慮函數(shù)的單調(diào)性和導(dǎo)數(shù)的幾何意義.