18.一位手機(jī)用戶前四次輸入四位數(shù)字手機(jī)密碼均不正確,第五次輸入密碼正確,手機(jī)解鎖.事后發(fā)現(xiàn)前四次輸入的密碼中,每次都有兩個(gè)數(shù)字正確,但它們各自的位置均不正確.已知前四次輸入密碼分別為3406,1630,7364,6173,則正確的密碼中一定含有數(shù)字( 。
A.4,6B.3,6C.3,7D.1,7

分析 若正確的密碼中一定含有數(shù)字3,6,而3,6在第1,2,3,4的位置都有,與它們各自的位置均不正確矛盾.同理正確的密碼中一定含有數(shù)字4,6,或3,7不正確.正確的密碼中一定含有數(shù)字1,7.

解答 解:若正確的密碼中一定含有數(shù)字3,6,而3,6在第1,2,3,4的位置都有,與它們各自的位置均不正確矛盾.同理正確的密碼中一定含有數(shù)字4,6,或3,7不正確.
若正確的密碼中一定含有數(shù)字1,7,
而3,6在第1,2,3,4的位置都有,
根據(jù)它們各自的位置均不正確,可得1在第三位置,7在第四位置.
故選:D.

點(diǎn)評 本題考查了合情推理,考查了推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC中,a,b,c分別是角A,B,C的對邊,已知A=60°,$a=\sqrt{31}$,b=6,則c=1或5 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-2x-1,x≤0}\end{array}\right.$,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x2+y2+2x+2y在D上的最小值為-$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖為某幾何體的三視圖,則其體積為(  )
A.$\frac{14π}{6}+12$B.$\frac{11π}{3}+4$C.$\frac{11π}{6}+12$D.$\frac{11π}{3}+12$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度.藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:

根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說法中,不正確的是( 。
A.首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
B.每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒
C.每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
D.首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,是一個(gè)幾何體的正視圖、側(cè)視圖、俯視圖,且正視圖、側(cè)視圖都是矩形,俯視圖是平行四邊形,則該幾何體的體積是( 。
A.$\frac{8\sqrt{15}}{3}$B.8$\sqrt{15}$C.$\frac{4\sqrt{15}}{3}$D.4$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一汽車銷售公司對開業(yè)5年來某種型號的汽車“五一”優(yōu)惠金額與銷售量之間的關(guān)系進(jìn)行分析研究并做了記錄,得到如下資料.
日期第1年第2年第3年第4年第5年
優(yōu)惠金額x(千元)101113128
銷售量y(輛)2325302616
該公司所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1年與第5年的兩組數(shù)據(jù),請根據(jù)其余三年的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2輛,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
相關(guān)公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,A=$\frac{π}{4}$,b2-a2=c2,則tan C等于( 。
A.1B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案