已知雙曲線的兩個焦點分別為F1、F2,雙曲線與坐標軸的兩個交點分別為A、B,若,則雙曲線的離心率e=( )
A.
B.
C.
D.
【答案】分析:根據(jù)題中條件雙曲線的兩個焦點分別為F1、F2,雙曲線與坐標軸的兩個交點分別為A、B,得出|F1F2|=2c,|AB|=2a,再利用雙曲線的幾何性質(zhì)即可得出答案.
解答:解:根據(jù)題意得,|F1F2|=2c,|AB|=2a,
∴雙曲線的離心率e===
故選A.
點評:本小題主要考查雙曲線的標準方程、雙曲線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是( 。
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的兩個焦點是橢圓
x2
100
+
y2
64
=1
的兩個頂點,雙曲線的兩條準線經(jīng)過橢圓的兩個焦點,則此雙曲線的方程是( 。
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的兩個焦點為橢圓
x2
16
+
y2
7
=1
的長軸的端點,其準線過橢圓的焦點,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的兩個焦點F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點,|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習冊答案