用數(shù)學歸納法證明12+22+32+42+…+n2 = 

 

【答案】

見解析.

【解析】用數(shù)學歸納法要分兩個步驟:一是驗證n取最小的整數(shù)是否成立

二是假設n=k時,命題成立,然后再證明當n=k+1時,命題也成立,在證明時,必須要用上n=k時的歸納假設,否則證明無效這兩個步驟上相輔相成的,缺一不可

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明
1
2
+cosα+cos3α+…+cos(2n-1)α=
sin
2n+1
2
a•cos
2n-1
2
a
sina
(k∈Z*,α≠kπ,n∈N+),在驗證n=1時,左邊計算所得的項是
1
2
+cosα
1
2
+cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12
n(2n2+1)
3
時,由n=k的假設到證明n=k+1時,等式左邊應添加的式子是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)
3
時,從“k到k+1”左邊需增加的代數(shù)式是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=
n(2n2+1)3
時,由n=k的假設到證明n=k+1時,等式左邊應添加的式子是
(k+1)2+k2
(k+1)2+k2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明12+22+32+…+n2=
n(n+1)(2n+1)6
,(n∈N*

查看答案和解析>>

同步練習冊答案