對于數(shù)列{an},(n∈N+,an∈N+),若bk為a1,a2,…,ak中最大值(k=1,2,…n),則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說法正確的有
①④
①④

①遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
②不存在數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③任意數(shù)列{an}的“凸值數(shù)列”是遞增數(shù)列;
④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列{an}的個數(shù)為3.
分析::①根據(jù)“凸值數(shù)列”的定義,可得遞減數(shù)列{an}的“凸值數(shù)列”為a1,a1,…,a1;
②常數(shù)列{an},它的“凸值數(shù)列”還是{an}本身;
③遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列;
④寫出“凸值數(shù)列”為1,3,3,9的所有數(shù)列{an},即可得到結(jié)論.
解答:解:①根據(jù)“凸值數(shù)列”的定義,可得遞減數(shù)列{an}的“凸值數(shù)列”為a1,a1,…,a1,∴是常數(shù)列,∴①正確;
②常數(shù)列{an},它的“凸值數(shù)列”還是{an}本身,∴②不正確;
③遞減數(shù)列{an}的“凸值數(shù)列”是常數(shù)列,∴③不正確;
④“凸值數(shù)列”為1,3,3,9的所有數(shù)列{an}為1,3,1,9;1,3,2,9,;1,3,3,9,個數(shù)為3,∴④正確.
故答案為①④
點(diǎn)評:本題主要考查“凸值數(shù)列”的定義,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
13
2
n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=
a1(n=1)
2n-1
an
(n≥2,n∈N*)
,求證:b1+
b2
2
+…+
bn
n
17
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、對于數(shù)列{an},若存在常數(shù)M,使得對任意n∈N*,an與an+1中至少有一個不小于M,則記作{an}?M,那么下列命題正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{an},定義數(shù)列{bm}如下:對于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)設(shè){an}是單調(diào)遞增數(shù)列,若a3=4,則b4=
 

(Ⅱ)若數(shù)列{an}的通項(xiàng)公式為an=2n-1,n∈N*,則數(shù)列{bm}的通項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•上海一模)觀察數(shù)列:
①1,-1,1,-1,…;
②正整數(shù)依次被4除所得余數(shù)構(gòu)成的數(shù)列1,2,3,0,1,2,3,0,…;
③an=tan
3
,n=1,2,3,…
(1)對以上這些數(shù)列所共有的周期特征,請你類比周期函數(shù)的定義,為這類數(shù)列下一個周期數(shù)列的定義:對于數(shù)列{an},如果
存在正整數(shù)T
存在正整數(shù)T
,對于一切正整數(shù)n都滿足
an+T=an
an+T=an
成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列;
(2)若數(shù)列{an}滿足an+2=an+1-an,n∈N*,Sn為{an}的前n項(xiàng)和,且S2=2008,S3=2010,證明{an}為周期數(shù)列,并求S2008;
(3)若數(shù)列{an}的首項(xiàng)a1=p,p∈[0,
1
2
),且an+1=2an(1-an),n∈N*,判斷數(shù)列{an}是否為周期數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)對于數(shù)列{an},從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差依次組成等比數(shù)列,稱該等比數(shù)列為數(shù)列{an}的“差等比數(shù)列”,記為數(shù)列{bn}.設(shè)數(shù)列{bn}的首項(xiàng)b1=2,公比為q(q為常數(shù)).
(I)若q=2,寫出一個數(shù)列{an}的前4項(xiàng);
(II)(。┡袛鄶(shù)列{an}是否為等差數(shù)列,并說明你的理由;
(ⅱ)a1與q滿足什么條件,數(shù)列{an}是等比數(shù)列,并證明你的結(jié)論;
(III)若a1=1,1<q<2,數(shù)列{an+cn}是公差為q的等差數(shù)列(n∈N*),且c1=q,求使得cn<0成立的n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案