若(1-2x)2014=a0+a1x+…+a2014x2014,則
a1
2
+
a2
22
+…+
a2014
22014
=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由題意可得a0=1,在所給的等式中,令x=
1
2
,即可求得
a1
2
+
a2
22
+…+
a2014
22014
的值.
解答: 解:在(1-2x)2014=a0+a1x+…+a2014x2014 中,顯然,a0=1.
令x=
1
2
,可得1+
a1
2
+
a2
22
+…+
a2014
22014
=0,
a1
2
+
a2
22
+…+
a2014
22014
=-1,
故答案為:-1.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2lnx-x2+ax,a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)求滿足條件的所有實(shí)數(shù)a,使e-1≤f(x)≤e2對(duì)x∈[1,e]恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b∈R,求證:a2+2b2+1≥2b(a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品的數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有18件,那么此樣本的容量n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知S-ABCD是一個(gè)底面邊長(zhǎng)為4
2
,高為3的正四棱錐.在S-ABCD內(nèi)任取一點(diǎn)P,則四棱錐P-ABCD的體積大于16的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x-4(x≤1)
x2-4x+3(x>1)
,g(x)=log2x,則函數(shù)f(x)=g(x)的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的準(zhǔn)線與圓x2+y2-2x-3=0相切,則p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算復(fù)數(shù)(1-i)2-
4+2i
1-2i
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某一幾何體的三視圖如圖所示,其中圓的半徑都為1,則該幾何體的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案