(a>-1,且a≠0),求x的取值范圍.

答案:
解析:

當a>0時,x≥2或x≤1;當-1<a<0時,1≤x≤2


提示:

分a>0和-1<a<0兩類討論.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)=b•ax(其中a,b為常數(shù)且a>0,a≠1)的反函數(shù)的圖象經(jīng)過點A(4,1)和B(16,3).
(1)求a,b的值;
(2)若不等式(
1a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于使-x2+2x≤M成立的所有常數(shù)M中,我們把M的最小值l做-x2+2x的上確界,若a,b∈R,且a+b=1,則-
1
2a
-
2
b
的上確界為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)(ⅰ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設(shè)A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•荊州模擬)已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a、b∈[-1,1],a+b≠0,有
f(a)+f(b)a+b
>0

(1)、判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)、若f(x)≤m2-2am+1對所有的x∈[-1,1]、a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案