設(shè)f(x)是定義在R上的函數(shù),且對任意實數(shù)x、y都有f(x+y)=f(x)+f(y).求證:
(1)f(x)是奇函數(shù);
(2)若當(dāng)x>0時,有f(x)>0,則f(x)在R上是增函數(shù).
解:(1)顯然f(x)的定義域是R,關(guān)于原點對稱.
又∵函數(shù)對一切x、y都有f(x+y)=f(x)+f(y),
∴令x=y=0,得f(0)=2f(0),∴f(0)=0.
再令y=-x,得f(0)=f(x)+f(-x),
∴f(-x)=-f(x),
∴f(x)為奇函數(shù).
(2)任取x1<x2,x2-x1>0,則f(x2-x1)>0
∴f(x2)+f(-x1)>0;
對f(x+y)=f(x)+f(y)取x=y=0得:f(0)=0,
再取y=-x得f(x)+f(-x)=0即f(-x)=-f(x),
∴有f(x2)-f(x1)>0
∴f(x2)>f(x1)
∴f(x)在R上遞增.
分析:(1)判斷f(x)奇偶性,即找出f(-x)與f(x)之間的關(guān)系,∴令y=-x,有f(0)=f(x)+f(-x),故問題轉(zhuǎn)化為求f(0)即可,可對x、y都賦值為0;
(2)依據(jù)函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,充分利用條件當(dāng)x>0時,有f(x)>0與f(x+y)=f(x)+f(y),即可判定單調(diào)性.
點評:本題考點是抽象函數(shù)及其性質(zhì),在研究其奇偶性時本題采取了連續(xù)賦值的技巧,這是判斷抽象函數(shù)性質(zhì)時常用的一種探究的方式,屬于中檔題.