精英家教網 > 高中數學 > 題目詳情
已知命題p:方程x2+mx+1=0有兩個不相等的實根;q:不等式4x2+4(m-2)x+1>0的解集為R;若p或q為真,p且q為假,求實數m的取值范圍.
分析:利用一元二次方程有兩個不相等的實根與判別式的關系即可得出p,再利用不等式4x2+4(m-2)x+1>0的解集為R與判別式的關系即可得出q;
由p或q為真,p且q為假,可得p與q為一真一假,進而得出答案.
解答:解:∵方程x2+mx+1=0有兩個不相等的實根,
1=m2-4>0,∴m>2或m<-2                    
又∵不等式4x2+4(m-2)x+1>0的解集為R,
2=16(m-2)2-16<0,∴1<m<3                 
∵p或q為真,p且q為假,
∴p與q為一真一假,
(1)當p為真q為假時,
m>2或m<-2
m≤1或m≥3
,解得m<-2或m≥3.
(2)當p為假q為真時,
-2≤m≤2
1<m<3
⇒1<m≤2

綜上所述得:m的取值范圍是m<-2或m≥3或1<m≤2.
點評:熟練掌握“三個二次”與判別式的關系及其“或”“且”命題的真假的判定是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負實根;q:方程mx2+(m-1)x+m=0無實根.若“p或q”為真,p且q”為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題P:方程x2+mx+1=0有兩個不相等的負實數根;命題Q:函數f(x)=lg[4x2+(m-2)x+1]的定義域為實數集R,若P或Q為真,P且Q為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題P:“方程x2+
y2m
=1表示焦點在y軸上的橢圓”;命題Q:“方程2x2-4x+m=0沒有實數根”.若P∧Q假,P∨Q為真,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題P:方程x2-2mx+m=0沒有實數根;
命題Q:?x∈R,x2+mx+1≥0.
(1)寫出命題Q的否定“¬Q”;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實數根,命題q:方程4x2+4(m+2)x+1=0無實數根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案