某校從高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計(jì)這次考試的平均分;
(Ⅱ)假設(shè)在[90.100]段的學(xué)生的成績(jī)都不相同,且都在97分以上,現(xiàn)用簡(jiǎn)單隨機(jī)抽樣方法,從96,97,98,99,100這5個(gè)數(shù)中任取2個(gè)數(shù),求這2個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績(jī)的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)利用各個(gè)矩形的寬的中點(diǎn)乘以相應(yīng)的矩形的長(zhǎng),再將各個(gè)乘積加起來(lái)即得到這次考試的平均分.
(Ⅱ)首先一列舉出所有滿足條件的基本事件,找到符合添加的基本事件,根據(jù)古典概型的概率公式求得.
解答: 解:(Ⅰ)利用中值估算抽樣學(xué)生的平均分,
平均分為45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.
即估計(jì)這次考試的平均分是72分.
(Ⅱ)從96,97,98,99,100這5個(gè)數(shù)中任取2個(gè)數(shù)全部的基本事件有;(96,97),(96,98),(96,99),(96,100),(97,98),
(97,99),(97,100),(98,99),(98,100),(99,100),共10個(gè)基本結(jié)果.
如果這2個(gè)數(shù)恰好是兩個(gè)學(xué)生的成績(jī),則這2個(gè)學(xué)生在[90,100]段,而[90,100]段,而[90,100]的人數(shù)是3人,則這3人的成績(jī)是98,99,100,
則事件A:“2個(gè)數(shù)恰是兩個(gè)學(xué)生的成績(jī)”包括的基本結(jié)果有:(98,99),(98,100),(99,100)共3個(gè)基本事件,
所以所求的概率為P(A)=
3
10
點(diǎn)評(píng):本題主要考查了古典概型的概率的求法和求平均數(shù)的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=1-2i(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為(  )
A、-2B、2C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin(2x+
π
4
).
(1)求它的振幅、周期、初相;
(2)在所給坐標(biāo)系中用五點(diǎn)法作出它在區(qū)間[
π
8
8
]上的圖象.
(3)說(shuō)明y=sinx的圖象可由y=
2
sin(2x+
π
4
)的圖象經(jīng)過(guò)怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米至75微克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo),北方城市環(huán)保局從該市市區(qū)2013年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)的抽取20天的數(shù)據(jù)作為樣本,發(fā)現(xiàn)空氣質(zhì)量為一級(jí)的有4天,為二級(jí)的有10天,超標(biāo)的有6天.
(1)從這20天的日均PM2.5監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽出三天數(shù)據(jù),求恰有一天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這20天的數(shù)據(jù)中任取三天數(shù)據(jù),求抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù)不超過(guò)2天的概率;
(3)根據(jù)這20天的PM2.5日均值來(lái)估計(jì)一年的空氣質(zhì)量情況,則一年(按365天計(jì)算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx)(ω>0).函數(shù)f(x)=
a
b
,且函數(shù)f(x)的最小正周期為π.
(1)當(dāng)x∈[0,2π]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx(a∈R).
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)若a=-1,問(wèn):當(dāng)x>1時(shí),f(x)<
2
3
x3是否恒成立,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在單位圓中,
(1)證明兩角差的余弦公式Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;并由Cα-β推導(dǎo)兩角差的正弦公式Sα-β:sin(α-β).
(2)計(jì)算:sin15°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=sin(2x+
3
),將其圖象向左平移
π
4
個(gè)單位,再向上平移
1
2
個(gè)單位得到函數(shù)f(x)=acos2(x+
π
3
)+b的圖象.
(1)求實(shí)數(shù)a、b的值;
(2)設(shè)函數(shù)φ(x)=g(x)-
3
f(x),求函數(shù)φ(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求曲線y=f(x)=x3在點(diǎn)(1,1)處的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案