已知函數(shù)f(x)滿足:f(1)=
1
4
,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R)
,則f(2012)=( 。
分析:由于題目問的是f(2012),項(xiàng)數(shù)較大,故馬上判斷函數(shù)勢必是周期函數(shù),所以集中精力找周期即可;周期的尋找方法可以是不完全歸納推理出,也可以是演繹推理得出.
解答:解:∵4f(x)f(y)=f(x+y)+f(x-y)
取x=1,y=0得f(0)=
1
2

法一:∵f(1)=
1
4

取x=1,y=1得f(2)=-
1
4

取x=2,y=1得f(3)=-
1
2

取x=2,y=2得f(4)=-
1
4

取x=3,y=2得f(5)=-
7
16

取x=3,y=3得f(6)=
1
2

猜想得周期為6
∴f(2012)=f(2)=-
1
4

法二:取x=1,y=0得f(0)=
1
2

取x=n,y=1,有f(n)=f(n+1)+f(n-1),
同理f(n+1)=f(n+2)+f(n)
聯(lián)立得f(n+2)=-f(n-1)
所以f(n)=-f(n+3)=f(n+6)
所以函數(shù)是周期函數(shù),周期T=6,
故f(2012)=f(2)=-
1
4

故選B
點(diǎn)評:準(zhǔn)確找出周期是此類問題(項(xiàng)數(shù)很大)的關(guān)鍵,分別可以用歸納法和演繹法得出周期,解題時(shí)根據(jù)自己熟悉的方法得出即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時(shí),曲線y=f(x)在點(diǎn)M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時(shí)恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點(diǎn)個(gè)數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時(shí),f(x)=f(x-1);當(dāng)x<1時(shí),f(x)=2x,則f(log27)=(  )

查看答案和解析>>

同步練習(xí)冊答案