分析:由于題目問的是f(2012),項(xiàng)數(shù)較大,故馬上判斷函數(shù)勢必是周期函數(shù),所以集中精力找周期即可;周期的尋找方法可以是不完全歸納推理出,也可以是演繹推理得出.
解答:解:∵4f(x)f(y)=f(x+y)+f(x-y)
取x=1,y=0得f(0)=
法一:∵f(1)=
取x=1,y=1得f(2)=-
取x=2,y=1得f(3)=-
取x=2,y=2得f(4)=-
取x=3,y=2得f(5)=-
取x=3,y=3得f(6)=
猜想得周期為6
∴f(2012)=f(2)=-
法二:取x=1,y=0得f(0)=
取x=n,y=1,有f(n)=f(n+1)+f(n-1),
同理f(n+1)=f(n+2)+f(n)
聯(lián)立得f(n+2)=-f(n-1)
所以f(n)=-f(n+3)=f(n+6)
所以函數(shù)是周期函數(shù),周期T=6,
故f(2012)=f(2)=-
故選B
點(diǎn)評:準(zhǔn)確找出周期是此類問題(項(xiàng)數(shù)很大)的關(guān)鍵,分別可以用歸納法和演繹法得出周期,解題時(shí)根據(jù)自己熟悉的方法得出即可.