命題“?數(shù)列{an},{bn}既是等差數(shù)列,又是等比數(shù)列”(  )
A、是特稱命題并且是假命題
B、是全稱命題并且是假命題
C、是特稱命題并且是真命題
D、是全稱命題并且是真命題
考點:特稱命題
專題:簡易邏輯
分析:直接利用特稱命題與全稱命題的定義以及命題的真假判斷即可.
解答: 解:由特稱命題的定義可知:命題“?數(shù)列{an},{bn}既是等差數(shù)列,又是等比數(shù)列”是特稱命題,
例如:非0常數(shù)數(shù)列,滿足題意.
故選:C.
點評:本題考查命題的真假判斷特稱命題與全稱命題的關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖所示的流程圖(未完成),設(shè)當(dāng)箭頭a指向①時輸出的結(jié)果S=m,當(dāng)箭頭a指向②時,輸出的結(jié)果S=n,求m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x+m在區(qū)間[0,
π
2
]上的最大值為3,則
(Ⅰ)m=
 

(Ⅱ)對任意a∈R,f(x)在[a,a+20π]上的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-2009x,若f(m)=f(n),m≠n,則f(m+n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的頂點A,B,C在正方形網(wǎng)格中的位置如圖所示.則cos(B+C)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,該程序運行后輸出的S為( 。
A、-
1
2
B、2
C、-3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖,若輸出的結(jié)果是7,則判斷框中的橫線上可以填入的最大整數(shù)為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=3+4i,則
|z|
z
=( 。
A、
3
5
-
4
5
i
B、-
3
5
-
4
5
i
C、
3
5
+
4
5
i
D、-
3
5
+
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2x+
3
)4=a0+a1x+a2x2+a3x3
+a4x4,則(a0+a2+a4)2-(a1+a3)2的值為( 。
A、-1B、1C、2D、-2

查看答案和解析>>

同步練習(xí)冊答案