設(shè)點(diǎn)P是圓x2+y2=4上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動時(shí),則線段PD的中點(diǎn)M的軌跡方程是
 
分析:設(shè)點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)P的坐標(biāo)為(x0,y0),由中點(diǎn)坐標(biāo)公式寫出方程組,解出x0和y0,代入已知圓的方程即可.
此求軌跡方程的方法為相關(guān)點(diǎn)法.
解答:解:設(shè)點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)P的坐標(biāo)為(x0,y0),
x=
x0+8
2
,y=
y0
2
.即x0=2x-8,y0=2y.
因?yàn)辄c(diǎn)P(x0,y0)在圓x2+y2=4上,所以x02+y02=4.
即(2x-8)2+(2y)2=4,即(x-4)2+y2=1,這就是動點(diǎn)M的軌跡方程.
故答案為:(x-4)2+y2=1
點(diǎn)評:本題考查相關(guān)點(diǎn)法求軌跡方程.在用此法時(shí),注意要將要求的動點(diǎn)坐標(biāo)設(shè)為(x,y),最后求得的x與y的關(guān)系式即為所求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P是圓x2+y2=4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
MP0
=
3
2
pp0

(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線l過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,設(shè)點(diǎn)P(x,y),定義[OP]=|x|+|y|,其中O為坐標(biāo)原點(diǎn).對于下列結(jié)論:
①符合[OP]=1的點(diǎn)P的軌跡圍成的圖形的面積為2;
②設(shè)點(diǎn)P是直線:
5
x+2y-2=0
上任意一點(diǎn),則[OP]min=
2
3
;
③設(shè)點(diǎn)P是直線:y=kx+1(k∈R)上任意一點(diǎn),若使得[OP]最小的點(diǎn)P有無數(shù)個(gè),則k的值是k=±1;
④設(shè)點(diǎn)P是圓x2+y2=1上任意一點(diǎn),則[OP]max=
2

其中正確的結(jié)論序號為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省武漢市武昌區(qū)高三上學(xué)期期末調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分13分)

設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且

(Ⅰ)求點(diǎn)M的軌跡C的方程;

(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.

(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;

(2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

     設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且

    (Ⅰ)求點(diǎn)M的軌跡C的方程;

    (Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.

        (1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;

        (2)若以AB為直徑的圓過曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案