已知定點A(-2,0),動點B是圓F為圓心)上一點,線段AB的垂直平分線交BFP.
(1)求動點P的軌跡方程;
(2)是否存在過點E(0,-4)的直線lP點的軌跡于點R,T,且滿足 (O為原點),若存在,求直線l的方程,若不存在,請說明理由.
(1)(2)
(1)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P點軌跡為以A、F為焦點的橢圓…………………………3分
設(shè)方程為
………………………5分
(2)假設(shè)存在滿足題意的直線l,其斜率存在,設(shè)為k,設(shè)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓W的中心在原點,焦點在軸上,離心率為,兩條準線間的距離為6. 橢圓W的左焦點為,過左準線與軸的交點任作一條斜率不為零的直線與橢圓W交于不同的兩點、,點關(guān)于軸的對稱點為.
(Ⅰ)求橢圓W的方程;
(Ⅱ)求證: ();
(Ⅲ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)橢圓,)的右焦點與拋物線的焦點相同,離心率為,則此橢圓的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若過點作直線與拋物線有且只有一個公共點,則這樣的直線有(    )
A.一條B.兩條C.三條D.四條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,下列三圖中的多邊形均為正多邊形,M、N是所在邊的中點,雙曲線均以圖中的F1,F2為焦點,設(shè)圖中的雙曲線的離心率分別為e1,e2,e3,則                                  (   )
A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-, 直線ly軸交于點P(0,m),與橢圓C交于相異兩點A、B,且
(1)求橢圓方程;
(2)若,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(1)求動圓圓心M的軌跡方程;
(2)過原點且傾斜角為的直線交(1)中軌跡P、Q兩點,PQ的中垂線交軸N. 求三角形PQN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知點C的坐標是(2,2),過點C的直線CA與x軸交于點A,過點C且與直線CA垂直的

直線CB與y軸交于點B.設(shè)點M是線段AB的中點,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在中,,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率的倒數(shù)和為      (   )
A.           B.     C.          D.

查看答案和解析>>

同步練習冊答案