設(shè)x∈R,則
x2
1+x4
1
2
的大小關(guān)系是______.
由于x∈R,故x2≥0
①當(dāng)x2=0時,則
x2
1+x4
1
2
顯然成立;
②當(dāng)x2>0時,
x2
1+x4
=
1
1
x2
+x2
1
2
1
x2
?x2
=
1
2

當(dāng)且僅當(dāng)x2=
1
x2
時,等式成立.
故答案為:
x2
1+x4
1
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述
①對于函數(shù)f(x)=-x2+1,當(dāng)x1≠x2時,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
);
②設(shè)f(x)=
1+x2
1-x2
則f(2)+f(3)+…+f(2012)+f(
1
2
)+f(
1
3
)+…+f(
1
2012
)=0;
③定義域是R的函數(shù)y=f(x)在[a,b)上遞增,且在[b,c]上也遞增,則f(x)在[a,c]上遞增;
④設(shè)滿足3x=5y的點P為(x,y),則點P(x,y)滿足xy≥0.
其中正確的所有番號是:
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的導(dǎo)數(shù)為0的點稱為函數(shù)的駐點,若點(1,1)為函數(shù)f(x)的駐點,則稱f(x)具有“1-1駐點性”.
(1)設(shè)函數(shù)f(x)=-x+2
x
+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點性”
②求函數(shù)f(x)的單調(diào)區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點性”,給定x1,x2∈R,x1<x2,設(shè)λ為實數(shù),且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,則
x2
1+x4
1
2
的大小關(guān)系是
x2
1+x4
1
2
x2
1+x4
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x∈R,則
x2
1+x4
1
2
的大小關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊答案