過雙曲線的左焦點F(-c,0)作圓x2+y2=a2的切線,切點為E,延長FE交拋物線y2=4cx于點P,若E為線段FP的中點,則雙曲線的離心率為   
【答案】分析:先設(shè)雙曲線的右焦點為F',則F'的坐標為(c,0)因為拋物線為y2=4cx,所以F'為拋物線的焦點 O為FF'的中點,E為FP的中點所以O(shè)E為△PFF'的中位線,得到PF=2b,再設(shè)P(x,y) 過點F作x軸的垂線,由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率.
解答:解:設(shè)雙曲線的右焦點為F',則F'的坐標為(c,0)
因為拋物線為y2=4cx,
所以F'為拋物線的焦點 O為FF'的中點,
E為FP的中點所以O(shè)E為△PFF'的中位線,
那么OE∥PF'
因為OE=a 那么PF'=2a
又PF'⊥PF,F(xiàn)F'=2c 所以PF=2b
設(shè)P(x,y) x+c=2a x=2a-c
過點F作x軸的垂線,
點P到該垂線的距離為2a
由勾股定理 y2+4a2=4b2
4c(2a-c)+4a2=4(c2-a2
得e=
故答案為:
點評:本小題主要考查雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•三明模擬)已知雙曲線Γ:
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率e=2,過雙曲線Γ的左焦點F作⊙O:x2+y2=a2的兩條切線,切點分別為A、B,則∠AFB的大小等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過雙曲線的左焦點F,且與以實軸為直徑的圓相切,若直線l與雙曲線的一條漸近線恰好平行,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三第七次階段復(fù)習(xí)達標檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題

過雙曲線的左焦點F作⊙O: 的兩條切線,記切點為A,B,雙曲線左頂點為C,若,則雙曲線的離心率為____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:選擇題

過雙曲線的左焦點F的直線與雙曲線的左支交于A、B兩點,且以線段AB為直徑的圓被雙曲線C的左準線截得的劣弧的弧度數(shù)為,那么雙曲線的離心率為

(A)       (B)        (C)2      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省五校高三第四次聯(lián)考數(shù)學(xué)理卷 題型:選擇題

過雙曲線的左焦點F的直線與雙曲線的左支交于A、B兩點,且以線段AB為直徑的圓被雙曲線C的左準線截得的劣弧的弧度數(shù)為,那么雙曲線的離心率為

(A)       (B)        (C)2      (D)

 

查看答案和解析>>

同步練習(xí)冊答案