【題目】小王創(chuàng)建了一個(gè)由他和甲、乙、丙共4人組成的微信群,并向該群發(fā)紅包,每次發(fā)紅包的個(gè)數(shù)為1個(gè)(小王自己不搶?zhuān),假設(shè)甲、乙、丙3人每次搶得紅包的概率相同.
(Ⅰ)若小王發(fā)2次紅包,求甲恰有1次搶得紅包的概率;
(Ⅱ)若小王發(fā)3次紅包,其中第1,2次,每次發(fā)5元的紅包,第3次發(fā)10元的紅包,記乙搶得所有紅包的錢(qián)數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ)記“甲第i次搶得紅包”為事件Ai(i=1,2),“甲第i次沒(méi)有搶得紅包”為事件 .則 ,
記“甲恰有1次搶得紅包”為事件A,則 ,
由事件的獨(dú)立性和互斥性,得
=
(Ⅱ)記“乙第i次搶得紅包”為事件Bi(i=1,2,3),“乙第i次沒(méi)有搶得紅包”為事件
,
由題意知X的所有可能取值為0,5,10,15,20,
由事件的獨(dú)立性和互斥性,得:





所以X的分布列為:

X

0

5

10

15

20

P

所以乙搶得所有紅包的錢(qián)數(shù)之和X的數(shù)學(xué)期望:

【解析】(Ⅰ)記“甲第i次搶得紅包”為事件Ai(i=1,2),“甲第i次沒(méi)有搶得紅包”為事件 .記“甲恰有1次搶得紅包”為事件A,則 ,由此利用事件的獨(dú)立性和互斥性,能求出甲恰有1次搶得紅包的概率.(Ⅱ)記“乙第i次搶得紅包”為事件Bi(i=1,2,3),“乙第i次沒(méi)有搶得紅包”為事件 .由題意知X的所有可能取值為0,5,10,15,20,由事件的獨(dú)立性和互斥性,分別求出相應(yīng)的概率,由此能求出
X的分布列和數(shù)學(xué)期望.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知: 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢(xún)問(wèn)了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93,下列說(shuō)法正確的是(
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差
D.該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為為參數(shù), ),直線(xiàn),若直線(xiàn)與曲線(xiàn)C相交于A,B兩點(diǎn),且

(Ⅰ)求;

(Ⅱ)若M,N為曲線(xiàn)C上的兩點(diǎn),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿(mǎn)足如圖所示的曲線(xiàn)

(1)寫(xiě)出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測(cè)定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)l,m是兩條不同的直線(xiàn),α是一個(gè)平面,則下列命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l⊥α,l∥m,則m⊥α
C.若l∥α,mα,則l∥m
D.若l∥α,m∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某印刷廠為了研究印刷單冊(cè)書(shū)籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:

為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):

)分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較,的大小,判斷哪個(gè)模型擬合效果更好.

(2)該書(shū)上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率為0.8)或10千冊(cè)(概率為0.2),若印刷廠以沒(méi)測(cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠二次印刷8千冊(cè)還是10千冊(cè)恒獲得更多的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2﹣4x﹣5=0”的充分不必要條件
C.命題“若x<﹣1,則x2﹣2x﹣3>0”的否定為:“若x≥﹣1,則x2﹣2x﹣3≤0”
D.已知命題 p:x∈R,x2+x﹣1<0,則p:x∈R,x2+x﹣1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為 是橢圓上的一個(gè)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的上、下頂點(diǎn)分別為, )是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線(xiàn)段中點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn), 為線(xiàn)段的中點(diǎn),如果的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案