解:(I)∵平面ACE⊥平面ABCD,平面ACE∩平面ABCD=AC,
BC?平面ABCD,BC⊥AC
∴BC⊥平面ACE,結(jié)合AE?平面ACE,得AE⊥BC
∵△AEC中,AE
2+EC
2=2=AC
2∴∠AEC=90°,即AE⊥EC
∵BC∩EC=C,∴AE⊥平面BCEF;
(II)設(shè)AC中點為G,連接EG,
∵AE=CE,G為AC中點,∴EG⊥AC
由(I)可得BC⊥平面ACE,得BC⊥EG
∵BC、AC是平面ABCD內(nèi)的相交直線
∴EG⊥平面ABCD,
∵EF∥BC,EF?平面ABCD,BC?平面ABCD,
∴EF∥平面ABCD,可得F到平面ABCD的距離等于E到平面ABCD的距離
由此可得EG是三棱錐F-ACD的高
∵△ACD的面積S
△ACD=
×
×
=1,等腰Rt△ACE中,EG=
AC=
∴三棱錐F-ACD的體積V
F-ACD=
S
△ACD×EG=
×1×
=
由此可得:三棱錐D-ACF的體積V=V
F-ACD=
.
分析:(I)根據(jù)面面垂直的性質(zhì)定理,證出BC⊥平面ACE,可得AE⊥BC.利用勾股定理的逆定理得出AE⊥EC,結(jié)合線面垂直判定定理,得到AE⊥平面BCEF;
(II)根據(jù)(I)的結(jié)論和面面垂直性質(zhì)定理,證出EG⊥平面ABCD,結(jié)合FE∥平面ABCD得到EG就是F-ACD的高,最后利用三棱錐的體積公式算出三棱錐F-ACD的體積,即得三棱錐D-ACF的體積.
點評:本題給出特殊幾何體,求證線面垂直并求錐體體積.著重考查了空間線面垂直、線面平行的判定與性質(zhì),面面垂直的性質(zhì)定理和錐體公式等知識,屬于中檔題.