已知平面α⊥平面β,下面又四個(gè)命題:
①一定存在直線l,使得l⊥α,l⊥β;   ②一定存在平面γ,使得γ∥α,γ∥β
③一定存在平面γ,使得γ⊥α,γ⊥β;  ④一定存在直線l,使得l⊥α,l∥β
其中正確命題的序號(hào)是( 。
分析:由已知中平面α⊥平面β,令l⊥α,根據(jù)線面垂直及面面垂直的位置關(guān)系及幾何特征,可判斷①④的真假;根據(jù)面面平行的判定方法,可判斷②的真假;根據(jù)線面垂直及面面垂直的幾何特征,可判斷③的真假,進(jìn)而得到答案.
解答:解:∵平面α⊥平面β,
∴l(xiāng)⊥α?xí)r,l∥β或l?β,故①錯(cuò)誤,④正確;
若γ∥α,γ∥β,則α∥β,這與平面α⊥平面β矛盾,故②錯(cuò)誤;
若α∩β=a,當(dāng)a⊥γ時(shí),γ⊥α,γ⊥β,故③正確;
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,平面與平面之間的位置關(guān)系,熟練掌握空間線面關(guān)系的判定,性質(zhì),定義及幾何特征是解答此類問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、如圖:已知平面α∥平面β,點(diǎn)A、B在平面α內(nèi),點(diǎn)C、D在β內(nèi),直線AB與CD是異面直線,點(diǎn)E、F、G、H分別是線段AC、BC、BD、AD的中點(diǎn),求證:
(Ⅰ)E、F、G、H四點(diǎn)共面;
(Ⅱ)平面EFGH∥平面β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)V是已知平面M上所有向量的集合,對(duì)于映射f:V→V,a∈V,記a的象為f(a).若映射f:V→V滿足:對(duì)所有a、b∈V及任意實(shí)數(shù)λ,μ都有f(λa+μb)=λf(a)+μf(b),則f稱為平面M上的線性變換.下列命題中假命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題
①過(guò)平面外一定點(diǎn)有且只有一個(gè)平面與已知平面垂直;
②過(guò)空間一定點(diǎn)有且只有一條直線與已知平面垂直;
③過(guò)平面外一定直線有且只有一個(gè)平面與已知平面垂直;
④垂直于同一平面的兩個(gè)平面可能互相平行,也可能相交;
⑤垂直于同一條直線的兩個(gè)平面平行;
⑥平行于同一個(gè)平面的兩直線不是平行就是相交.
其中正確命題的序號(hào)為
②④⑤
②④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南長(zhǎng)沙重點(diǎn)中學(xué)高三上學(xué)期第四次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知下列四個(gè)命題,其中真命題的序號(hào)是(    )

① 若一條直線垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線,則這條直線與這個(gè)平面垂直;

② 若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;

③ 若一條直線平行一個(gè)平面,另一條直線垂直這個(gè)平面,則這兩條直線垂直;

④ 若兩條直線垂直,則過(guò)其中一條直線有唯一一個(gè)平面與另外一條直線垂直;

A.①②        B.②③         C.②④         D.③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題

如圖:已知平面//平面,點(diǎn)A、B在平面內(nèi),點(diǎn)C、D在內(nèi),直線AB與CD是異面直線,點(diǎn)E、F、G、H分別是線段AC、BC、BD、AD的中點(diǎn),

求證:(Ⅰ)E、F、G、H四點(diǎn)共面;

(Ⅱ)平面EFGH//平面.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案