如圖,已知等邊△ABC的邊長為2,D為AC的中點,且△ADE也是等邊三角形.在△ADE以點A為中心向下轉(zhuǎn)動到穩(wěn)定位置的過程中,
BD
CE
的取值范圍是
 
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:設∠BAD=θ,(0≤θ≤
π
3
),則∠CAE=θ,則
BD
CE
=(
AD
-
AB
)•(
AE
-
AC
),將其展開,運用向量的數(shù)量積的定義,再由兩角和差的余弦公式,化簡得到
5
2
-2cosθ,再由余弦函數(shù)的性質(zhì),即可得到范圍.
解答: 解:設∠BAD=θ,(0≤θ≤
π
3
),
則∠CAE=θ,
BD
CE
=(
AD
-
AB
)•(
AE
-
AC

=
AD
AE
-
AD
AC
-
AB
AE
+
AB
AC

=1×1×cos
π
3
-1×2×cos(
π
3
)-2×1×cos(
π
3
)+2×2×cos
π
3

=
5
2
-2(
1
2
cosθ+
3
2
sinθ+
1
2
cosθ-
3
2
sinθ)=
5
2
-2cosθ,
由于0≤θ≤
π
3
,則
1
2
≤cosθ≤1,
1
2
5
2
-2cosθ≤
3
2

故答案為:[
1
2
,
3
2
].
點評:本題考查平面向量的數(shù)量積的定義,考查三角函數(shù)的化簡和求最值,考查運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

頂點在坐標原點,對稱軸為坐標軸且經(jīng)過點(-2,3)的拋物線方程是( 。
A、y2=
9
4
x
B、x2=
4
3
y
C、y2=-
9
4
x或x2=-
4
3
y
D、y2=-
9
2
x或x2=
4
3
y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

OA
=(-2,m),
OB
=(n,1),
OC
=(5,-1),若A、B、C三點共線,且
OA
OB
,則m+n的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知λ1>0,λ2>0,
e1
、
e2
是一組基底,且
a
=λ1
e1
+λ2
e2
,則
a
e1
 
,
a
e2
 
(填共線或不共線).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sin(2x-
π
4
)的圖象向左平移
π
6
個單位,所得圖象的函數(shù)解析式是( 。
A、y=sin(2x-
12
B、y=sin(2x-
π
12
C、y=sin(2x-
12
D、y=sin(2x+
π
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,直線y=
3
3
x+4與以原點為圓心,短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點F1作不與x軸垂直的直線l,與橢圓交于A,B兩點,點M(m,0)滿足(
MA
-
MB
)•(
MA
+
MB
)=0,問
|
MA
-
MB
|
|
MF1
|
是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義域為R的函數(shù)f(x)=
4x-a
x2+1
(a為實常數(shù)).
(1)若f(1)=
1
2
,求a的值;
(2)當a。1)中所確定的值,求f(x)的值域;
(3)若f(x)值域為[-1,4],求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:不等式|x-2|+|x+m|>5的解集為R,命題q:函數(shù)f(x)=-(5-2m)x是減函數(shù),若p或q為真,p且q為假,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于命題“正方形的四個內(nèi)角相等”,下面判斷正確的是( 。
A、所給命題為假
B、它的逆否命題為真
C、它的逆命題為真
D、它的否命題為真

查看答案和解析>>

同步練習冊答案