若函數(shù)y=f(x)(x∈R)滿足條件:f(x+2)=f(x),且f(1)=1,則f(101)=
 
考點(diǎn):函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的周期性直接求解.
解答: 解:∵函數(shù)y=f(x)(x∈R)滿足條件:f(x+2)=f(x),且f(1)=1,
f(101)=f(1+2×50)=f(1)=1.
故答案為:1.
點(diǎn)評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)的周期性的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a5=3,則S9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)設(shè)點(diǎn)M是線段BD上一個動點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=9,S6=36,則S9的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≥0
x≥y
2x-y≤1
,則z=-5x+2y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下列程序:

如果輸入x=-2,則輸出結(jié)果y為( 。
A、0B、-1C、-2D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
e2
是不共線向量,
a
=k
e1
+
e2
b
=
e1
+k
e2
,若
a
b
a
b
,則實(shí)數(shù)k的值為( 。
A、0B、1C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種程序如圖所示,若該程序運(yùn)行后輸出的k的值是6,則滿足條件的整數(shù)一共有( 。﹤
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)記為f″(x),若在區(qū)間(a,b)上的f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“上凸函數(shù)”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2,若當(dāng)實(shí)數(shù)m滿足|m|≤2時,函數(shù)f(x)在區(qū)間(a,b)上為“上凸函數(shù)”,則區(qū)間(a,b)可以是(  )
A、(-1,3)
B、(0,1)
C、(-3,3)
D、(-3,1)

查看答案和解析>>

同步練習(xí)冊答案