若f (x) (x∈R)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=,則f(),f(),f()由小到大排列是   
【答案】分析:因?yàn)楫?dāng)x∈[0,1]時(shí),f(x)=,則函數(shù)f(x)在[0,1]上為增函數(shù),再根據(jù)周期性和奇偶性把要比較的三個函數(shù)值都轉(zhuǎn)化為[0,1]內(nèi)的函數(shù)值即可.
解答:解:因?yàn)楹瘮?shù)的周期是2,所以6也是函數(shù)的周期,
所以f()=f(6-)=f(),
f()=f(6-)=f(),
f()=f(6+)=f().
而f(x)是[0,1]上的增函數(shù).由,得
所以f()<f()<f().
故答案為f()<f()<f().
點(diǎn)評:本題是考查函數(shù)的單調(diào)性、奇偶性和周期性的綜合題,考查數(shù)學(xué)轉(zhuǎn)化思想,解答此題的關(guān)鍵是借助于函數(shù)的周期,把要比較的函數(shù)值轉(zhuǎn)化到已知單調(diào)性的區(qū)間內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
4+2b-b2
x
,g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(a,b):當(dāng)a是整數(shù)時(shí),存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實(shí)數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當(dāng)x∈(-2,0)時(shí),h(x)=f(x),當(dāng)x∈D時(shí),h(x)取得最大值的自變量的值構(gòu)成以x0為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

(文)已知函數(shù),,(a,b∈R)
(Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(a,b):當(dāng)a是整數(shù)時(shí),存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實(shí)數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當(dāng)x∈(-2,0)時(shí),h(x)=f(x),當(dāng)x∈D時(shí),h(x)取得最大值的自變量的值構(gòu)成以x為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市八校高三聯(lián)考數(shù)學(xué)試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

(文)已知函數(shù),(a,b∈R)
(Ⅰ)當(dāng)b=0時(shí),若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(a,b):當(dāng)a是整數(shù)時(shí),存在x,使得f(x)是f(x)的最大值,g(x)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實(shí)數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當(dāng)x∈(-2,0)時(shí),h(x)=f(x),當(dāng)x∈D時(shí),h(x)取得最大值的自變量的值構(gòu)成以x為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案