求經(jīng)過點(diǎn),且與圓

相切于點(diǎn)的圓的方程.


解析:

把圓的方程化成標(biāo)準(zhǔn)形式,得

的圓心坐標(biāo)是,半徑長(zhǎng)是.直線的方程為

的中點(diǎn)坐標(biāo)是,斜率是

線段的垂直平分線的方程是,即

聯(lián)立解得,

這是所求圓的圓心的坐標(biāo).

又因?yàn)?img width=225 height=49 src="http://thumb.zyjl.cn/pic1/1899/sx/47/92847.gif">,

經(jīng)過點(diǎn),且與圓相切于點(diǎn)的圓的方程是

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)設(shè)離心率e=
1
2
的橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線x+
3
y+3=0
相切,過點(diǎn)P的直線與橢圓M相交于相異兩點(diǎn)A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對(duì)稱,直線BC交x軸與點(diǎn)Q,求
QA
QC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)二模)平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩定點(diǎn)A(1,0)、B(0,-1),動(dòng)點(diǎn)P(x,y)滿足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相異兩點(diǎn)M、N.若以MN為直徑的圓經(jīng)過原點(diǎn),且雙曲線C的離心率等于
3
,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)設(shè)離心率e=
1
2
的橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是x軸正半軸上一點(diǎn),以PF1為直徑的圓經(jīng)過橢圓M短軸端點(diǎn),且該圓和直線x+
3
y+3=0
相切,過點(diǎn)P直線橢圓M相交于相異兩點(diǎn)A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點(diǎn)A、B關(guān)于x軸對(duì)稱,直線BC交x軸與點(diǎn)Q,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

求經(jīng)過點(diǎn)A(4,-1),且與已知圓C(x+1)2+(y3) 2=5相外切于點(diǎn)B(1,2)的圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

求經(jīng)過點(diǎn)A(4,-1),且與已知圓C(x+1)2+(y3) 2=5相外切于點(diǎn)B(12)的圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案