【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長(zhǎng),求直線的方程;

()若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

【答案】() .()

【解析】

試題分析:)確定拋物線的方程,設(shè)出直線方程與拋物線方程聯(lián)立,利用弦長(zhǎng)|PQ|=2,即可求直線l的方程;()設(shè)出直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合向量知識(shí),證明B(-,0),確定出,或m的范圍,表示出點(diǎn)B到直線l的距離d,即可求得取值范圍

試題解析:()解:由題意可知,,故拋物線方程為,焦點(diǎn).

設(shè)直線l的方程為,,.

消去x,得.所以=n2+1>0,.

因?yàn)?/span>,點(diǎn)A與焦點(diǎn)F重合,

所以.

所以n2=1,即n=±1.所以直線l的方程為,

.

()證明:設(shè)直線l的方程為(m0),,

消去x,得

因?yàn)?/span>,所以=m2+4x0>0,y1+y2=m,y1y2=-x0.

設(shè)B(xB,0),則.

由題意知,,所以,

.

顯然,所以,即證B(-x0,0).

由題意知,MBQ為等腰直角三角形,所以,即,也即,

所以,所以,

,所以>0,即

又因?yàn)?/span>,所以.,

所以d的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)體育測(cè)試成績(jī)分為四個(gè)等級(jí):優(yōu)、良、中、不及格.某班50名學(xué)生參加測(cè)試的結(jié)果如下:

等級(jí)

優(yōu)

不及格

人數(shù)

5

19

23

3

1從該班任意抽取1名學(xué)生,求這名學(xué)生的測(cè)試成績(jī)?yōu)?/span>的概率;

2)測(cè)試成績(jī)?yōu)?/span>優(yōu)的3名男生記為,,2名女生記為,.現(xiàn)從這5人中任選2人參加學(xué)校的某項(xiàng)體育比賽.

寫出所有等可能的基本事件;

求參賽學(xué)生中恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及法律知識(shí),達(dá)到法在心中的目的,某市法制辦組織了普法知識(shí)競(jìng)賽統(tǒng)計(jì)局調(diào)查隊(duì)隨機(jī)抽取了甲、乙兩單位中各5名職工的成績(jī),成績(jī)?nèi)缦卤恚?/span>

甲單位

87

88

91

91

93

乙單位

85

89

91

92

93

1根據(jù)表中的數(shù)據(jù),分別求出甲、乙兩單位職工成績(jī)的平均數(shù)和方差,并判斷哪個(gè)單位對(duì)法律知識(shí)的掌握更穩(wěn)定;

2用簡(jiǎn)單隨機(jī)抽樣法從乙單位5名職工中抽取2名,他們的成績(jī)組成一個(gè)樣本,求抽取的2名職工的分?jǐn)?shù)差至少是4的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間,上課開始時(shí),學(xué)生的興趣激增,中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,并趨于穩(wěn)定.分析結(jié)果和實(shí)驗(yàn)表明,設(shè)提出和講述概念的時(shí)間為(單位:分),學(xué)生的接受能力為值越大,表示接受能力越強(qiáng)),

(1)開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?

(2)試比較開講后5分鐘、20分鐘、35分鐘,學(xué)生的接受能力的大;(3)若一個(gè)數(shù)學(xué)難題,需要56的接受能力以及12分鐘時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講述完這個(gè)難題?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線).

(1)證明:直線過定點(diǎn);

(2)若直線不經(jīng)過第四象限,求的取值范圍;

(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為為坐標(biāo)原點(diǎn)),求的最小值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)

高校

相關(guān)人數(shù)

抽取人數(shù)

A

18


B

36

2

C

54


)求;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中, CC1⊥平面ABC, AC⊥BC, AB1的中點(diǎn)為D,B1C∩BC1=E. 求證:

(1)DE∥平面AA1C1C;

(2)AC⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

在四棱錐PABCD中,BCAD,PAPD,AD2BC,AB=PB, E為PA中點(diǎn)

(1)求證:BE平面PCD

(2)求證:平面PAB平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),線段的垂直平分線與直線交于點(diǎn)

求點(diǎn)的軌跡方程

若直線與點(diǎn)的軌跡有兩個(gè)不同的交點(diǎn),且原點(diǎn)總在以為直徑的圓的內(nèi)部,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案