【題目】已知,某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為(cm3);表面積為(cm2).

【答案】12;30+6
【解析】解:解:由三視圖可知該幾何體為四棱錐V﹣ABCD, 此四棱錐的底面為矩形,邊長(zhǎng)分別為3,4,側(cè)棱VA和底面垂直,該棱長(zhǎng)為3,即棱錐的高為3,
故體積為: ×3×12=12cm3;
側(cè)面VAB的面積為:
側(cè)面VAD的面積為: ×3×4=6
側(cè)面VBC的面積為:
側(cè)面VCD的面積為:
故幾何體的表面積S=30+6 cm2
所以答案是:12,30+6
【考點(diǎn)精析】本題主要考查了由三視圖求面積、體積的相關(guān)知識(shí)點(diǎn),需要掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)統(tǒng)計(jì)某射擊運(yùn)動(dòng)員隨機(jī)命中的概率可視為,為估計(jì)該運(yùn)動(dòng)員射擊4次恰好命中3次的概率,現(xiàn)采用隨機(jī)模擬的方法,先由計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)的隨機(jī)數(shù),用0,1,2 沒(méi)有擊中,用3,4,5,6,7,8,9 表示擊中,以 4個(gè)隨機(jī)數(shù)為一組, 代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):

7525,0293,7140,9857,0347,4373,8638,7815,1417,5550

0371,6233,2616,8045,6011,3661,9597,7424,7610,4281

根據(jù)以上數(shù)據(jù),則可估計(jì)該運(yùn)動(dòng)員射擊4次恰好命中3次的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的A、B、C三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè).

車間

A

B

C

數(shù)量

50

150

100

(1)求這6件樣品中來(lái)自A、B、C各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件商品來(lái)自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記max{a,b}= ,設(shè)M=max{|x﹣y2+4|,|2y2﹣x+8|},若對(duì)一切實(shí)數(shù)x,y,M≥m2﹣2m都成立,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若為奇函數(shù),求的值;

(2)試判斷內(nèi)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是現(xiàn)代生活中進(jìn)行信息交流的重要工具.據(jù)統(tǒng)計(jì),某公司200名員工中90%的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有60人,其余的員工每天使用微信時(shí)間在一小時(shí)以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個(gè)階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.

(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:

(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=AD=2,BC=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·朝鮮中學(xué)]在如圖所示的程序框圖中,有這樣一個(gè)執(zhí)行框,其中的函數(shù)關(guān)系式為,程序框圖中的為函數(shù)的定義域.

(1)若輸入,請(qǐng)寫出輸出的所有的值;

(2)若輸出的所有都相等,試求輸入的初始值

查看答案和解析>>

同步練習(xí)冊(cè)答案